各種計算機アプリケーション性能比較

目次

- 1. 多倍長演算アプリケーション
- 2. 倍精度演算アプリケーション

各種計算機

アーキテクチャの相違は性能のみならず,精度,コンパイラの最適化機能,互換性にも影響が出てきます。 使用した計算機は以下の5つです。

(ア)SR16000/M1

プロセッサ:power7 周波数:3.83GHz CPUコア数 32(物理的),64(論理的) 理論最大性能 980.48 GFLOPs メモリ容量 256GB メモリアーキテクチャー NUMA,(16論理コア単位でflat) SIMD(Single Instruction Multiple Data)を サポートするVSX機構付き L3キャッシュ On-Chip 32MB/8コア 演算器/物理コア 乗加算器4つ

(イ)SR16000/XM1

SR16000/xm1は周波数が3.3GHzで他はSR16000/M1と同じです。 演算性能だけみれば,SR16000/M1 1ノードはSR16000/xm1の16% 性能向上版ともいえます。

(ウ)T2K 筑波システム AMD quad-core Opteron 8000 シリーズ (Barcelona)

1 node:ピーク性能 147GFLOPs,16MPI/node

(工)GPGPU

GPU カード型番:ATI RadeonHD5880

メモリ: GDDR5, 1 GB, 153.6 GB/s

ホストインタフェース: PCI Express 2.1 x16stream

processing unit: 3200個(演算プロセッサ)

動作周波数: 850 MHzピーク性能(単精度): 5440 Gflops

(=3200x2x850MHz)ピーク性能(倍精度): 1088 Gflops

(オ) SR11000/K1(1ノード)

プロセッサ:power5

周波数:2.1GHz

CPUコア数 16

論理コア数 16

理論最大性能 134.4 GFLOPs

メモリ容量 32GB

メモリアーキテクチャー Flat Memory Interleave

L3キャッシュ Off-Chip 36MB/2コア

演算器/物理コア 乗加算器2つ

記述に関してはそれぞれ

- (ウ) T2k
- (工) GPGPU

(才) SR11000

としています。

1. 多倍長演算アプリケーション

 $+z(1-x-y)m_f^2$

測定した数値積分の積分式,解析近似解は以下の様なものです。

$$I = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{1}{D^2} dz dy dx$$

$$D = -sxy - tz(1-x-y-z) + (x+y)\lambda^2 + (1-x-y-z)(1-x-y)m_e^2$$

$$s = 500^2, t = -150^2, m_f = 150,$$

$$m_e = 0.0005, \lambda = 10^{-30}$$

解析近似解

$$I = \frac{1}{-s(-t + m_f^2)} \ln(\frac{-s}{\lambda^2}) \ln \frac{(-t + m_f^2)^2}{m_e^2 m_f^2}$$

相対誤差7×10⁻²⁶以下

ここで,変数の内容と単位は以下の様になっています。

 m_e :電子の質量(GeV), m_f :フェルミ粒子の質量(GeV)

s,t:衝突エネルギー(GeV^2),t<0

 λ : 仮想光子質量(GeV),実際の物理計算では 10^{-30} あたり。

(注) $1Gev = 10^9 eV$, $1eV = 1.602 \times 10^{-19} J$

実験との対応で要求される積分結果の精度は相対誤差0.1%以下です。

この積分計算は積分領域内で特異点(D=0)が存在(赤外発散)。

- =>微小量 ε を使用して, $D->D-i\varepsilon$ として有理化し 発散を回避(正確には $s->s+i\varepsilon$)
- $=>\varepsilon->0$ の極限の値を得てそれを目的とする積分値 としています。

測定では,数値積分法と加速法は以下のものを使用しています。

数值積分法:二重指数関数型積分法

加速法: ε – 算法(Wynnのアルゴリズム)

実数部の積分計算結果が要求される相対誤差0.1%以下を みたすのに要する時間は64スレッド(MPI)で以下の様 に変遷しています。

	実行時間-	- 覧表(秒)		
CPU	SR11000	SR16000/XM1	T2K	SR16000/M1
理論性能	537.6	844.8	588	980.49
(GFLOPs)				
4倍精度	681	589	414	224
6倍精度	346	401	372	208
8倍精度	382	458	708	314

多倍長精度演算結果(実数部)

解析近似解 -0.3561736812D-06

4倍精度 -0.3560594322D-06 相対誤差 0.032%

6倍精度 -0.3561608223D-06 相対誤差 0.004%

8倍精度 -0.3561449971D-06 相対誤差 0.008%

2 倍精度演算アプリケーション 倍精度演算で十分な精度がでて並列化効果の大きい 4つの数値積分プログラムで性能を比較しています。

(a)s221

$$S^{221}(s; m_1^2, m_2^2, m_3^2, m_4^2, m_5^2) = \int_0^1 \int_0^{1-x} \int_0^{1-x-y-1-x-y-z} \frac{1}{DC} du dz dy dx$$

$$C = (x + y + z + u)(1 - x - y - z - u) + (x + y)(z + u)$$

$$E = (1 - x - y - z - u)(x + z)(y + u) + (x + y)zu + (z + u)xy$$

$$M^{2} = xm_{1}^{2} + ym_{2}^{2} + zm_{3}^{2} + um_{4}^{2} + (1 - x - y - z - u)m_{5}^{2}$$

$$D = -sE + M^{2}C$$

テストケース

 $s^{221}(-1:100,100,0,0,100)$

解析近似解: 0.0380004438127

(b)laportad

$$I = \int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}-x_{2}} \int_{0}^{1-x_{1}-x_{2}-x_{3}-x_{4}} \int_{0}^{1-x_{1}-x_{2}-x_{3}-x_{4}} \frac{1}{D^{2}} dx_{5} dx_{4} dx_{3} dx_{2} dx_{1}$$

$$x_{6} = 1 - x_{1} - x_{2} - x_{3} - x_{4} - x_{5}$$

&-x1**2*x2-x1**2*x3-x1**2*x4-x1**2*x6-x1*x2**2-x1*x2*x3

&-2.d0*x1*x2*x4

&-x1*x2*x5-x1*x2*x6-x1*x3**2-2.d0*x1*x3*x4-x1*x3*x5-

x1*x3*x6

&-x1*x4**2

&-x1*x4*x5-2.d0*x1*x4*x6-x1*x5*x6-x1*x6**2- x2**2*x4-

x2**2*x5

&-x2*x3*x4

&-x2*x3*x5-x2*x4**2-2.d0*x2*x4*x5-x2*x4*x6-x2*x5**2-

x2*x5*x6

&-x3**2 *x4

&-x3**2*x5-x3*x4**2-2.d0*x3*x4*x5-x3*x4*x6-x3*x5**2-

x3*x5*x6

&-x4**2*x5

&-x4**2*x6-x4*x5**2-3.d0*x4*x5*x6-x4*x6**2-x5**2*x6-

x5*x6**2

解析近似解=0.2762092253588

(c) laportag

$$I = \int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}-1-x_{1}-x_{2}-x_{3}} \int_{0}^{1-x_{1}-x_{2}-x_{3}-x_{5}-x_{6}} \int_{0}^{1-x_{1}-x_{2}-x_{3}-x_{5}-x_{6}} \frac{C}{D^{3}} dx_{7} dx_{6} dx_{5} dx_{3} dx_{2} dx_{1}$$

$$x_{4} = 1 - x_{1} - x_{2} - x_{3} - x_{5} - x_{6} - x_{7}$$

解析近似解=0.1723367907503

$$I = \int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{3}-x_{1}-x_{1}-x_{3}-x_{2}-x_{1}-x_{1}-x_{3}-x_{2}-x_{7}-x_{6}} \int_{0}^{1-x_{1}-x_{3}-x_{2}-x_{7}-x_{6}} \int_{0}^{1-x_{1}-x_{3}-x_{2}-x_{7}-x_{6}} \frac{C}{D^{3}} dx_{4} dx_{6} dx_{7} dx_{2} dx_{3} dx_{1}$$

$$x_{5} = 1 - x_{1} - x_{3} - x_{2} - x_{7} - x_{6} - x_{4}$$

テストデータ

```
m12=1.0d0
m22=1.0d0
m32=1.0d0
m42=1.0d0
m52=1.0d0
m62=1.0d0
p12=1.0d0
p12=1.0d0
p22=1.0d0
p32=1.0d0
p42=1.0d0
t=1.0d0
```

解析近似解=0.1036407209893

実行結果の一覧を示します。

演算量はソースプログラム上でカウント(最適化による コンパイル前)していますので,性能は良い方向に でる傾向がありますので,目安としてください。

結果の検証

解析近似解

s221 = 0.0380004438129 laportad = 0.2762092253590 laportag = 0.1723367907503 laportah = 0.1036407209893

SR16000/XM1

s221 = 0.0380004438127 laportad = 0.2762092253590 laportag = 0.1723367907502 laportah = 0.1036407209892

T2K

s221 = 0.0380004438127 laportad = 0.2762092253590 laportag = 0.1723367907502 laportah = 0.1036407209892

GPGPU

s221 = 0.0380004438126 laportad = 0.2762092253588 laportag = 0.1723367907501 laportah = 0.1036407209891

SR16000/M1

s221 =0.0380004438127 laportad=0.2762092253469 laportag=0.1723367907503 laportah=0.1036407209893

T2K

プログラム	次元数	演算量	64MPI	128MPI	256MPI
		(TFLOP)	(秒)	(秒)	(秒)
s221	4	6.27429	31.807	15.888	8.007
laporatd	5	3.981312	11.927	5.959	2.967
laportag	6	391.1639	1257.935	621.679	311.828
laportah	6	394.1499	1151.404	580.99	290.99
性能(ピーク)147GFLOPs/node					
	4node	0.588TFLOPs			
	8node	1.176TFLOPs			
	16node	2.352TFLOPs			

SR16000/xm1

プログラム	次元数	演算量	16MPI	32MPI	64MPI
		(TFLOP)	(秒)	(秒)	(秒)
s221	4	6.27429	63.698	39.823	29.902
laporatd	5	3.981312	21.75	12.998	8.102
laportag	6	391.1639	3408.677	1956.102	1280.051
laportah	6	394.1499	2139.455	1500.685	1194.661
プログラム	次元数	演算量	16スレッド	32スレッド	64スレッド
		(TFLOP)	(秒)	(秒)	(秒)
s221	4	6.27429	36.236	28.769	15.257
laporatd	5	3.981312	19.543	12.472	6.533
laportag	6	391.1639	3017.369	1768.963	1162.71
laportah	6	394.1499	1609.981	861.16	793.411
	理論ピーク性能 0.844TFLOPs				

1ノードの場合はSMP並列がMPI並列より性能が 上回っています。

GPGPU

プログラム	次元数	演算量	gpu0	gpu1	gpu0,1
		(TFLOP)	(秒)	(秒)	(秒)
s221	4	6.27429	27.19	27.191	13.815
laporatd	5	3.981312	11.257	11.251	5.85
laportag	6	391.1639	1176.892	1176.6	589.553
laportah	6	394.1499	1132.186	1130.624	569.934
	理論ピーク性能				
		gpu0,gpu1	0.544TFLOPs		
		gpu0,1	1.088TFLOPs		

(注)1600コアGPU0,GPU1 3200コア GPU0,1

SR16000/M1

プログラム	次元数	演算量	16MPI	32MPI	64MPI
		(TFLOP)	(秒)	(秒)	(秒)
s221	4	6.27429	28.689	16.008	12.344
laporatd	5	3.981312	18.675	11.099	6.312
laportag	6	391.1639	2754.579	1520.859	1048.324
laportah	6	394.1499	1639.434	977.612	954.2
プログラム	次元数	演算量	16スレッド	32スレッド	64スレッド
		(TFLOP)	(秒)	(秒)	(秒)
s221	4	6.27429	27.265	14.429	11.774
laporatd	5	3.981312	16.838	8.687	5.523
laportag	6	391.1639	2575.904	1293.523	985.318
laportah	6	394.1499	1355.26	687.146	617.921

Xm1と同じく1ノードの場合はSMP並列がMPI並列より性能が上回っています。