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the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
equation, Equation (1), in the spherical coordinate system is
expressed as

1
c

∂f in
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+ cos θν

∂f in

∂r
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sin θν cos φν

r

∂f in
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cos θ

sin θ
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=
[

1
c
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δt

]

collision
,

(3)

with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by
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collision
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(4)

For the numerical calculation, we rewrite the equation in the
conservative form as
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collision
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(5)

We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
1
c

δf

δt

]

emis-abs
= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by

[
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= −

∫
dε′ε′2
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(2π )3

∫
dΩ′Rscat(ε′, Ω′; ε, Ω)

× f (ε′, Ω′)[1 − f (ε, Ω)], (9)

where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as
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= − ε2
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remark that the neutrino distribution function is a function of
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3.2. Neutrino Reactions
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the size of the block matrix due to the collision term smaller
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process to avoid the nonlinearity in equations and to guarantee
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will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
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In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
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the angles, µν and φν , is expressed as
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emission rate is related to the absorption rate through the detailed
balance as
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with the relation Rscat(Ω′; Ω) = Rscat(Ω; Ω′). The collision term
for the pair process is expressed by
[

1
c

δf

δt

]

pair
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rpair-anni(ε, Ω; ε′, Ω′)

× f (ε, Ω)f (ε′, Ω′) +
∫

dε′ε′2

(2π )3

∫
dΩ′Rpair-emis(ε, Ω; ε′, Ω′)

× [1 − f (ε, Ω)][1 − f (ε′, Ω′)], (11)

where f (ε′, Ω′) denotes the distribution of anti-neutrinos. From
the detailed balance, the following relation holds:

Rpair-anni(ε, Ω; ε′, Ω′) = Rpair-emis(ε, Ω; ε′, Ω′)eβ(ε+ε′). (12)

We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.

As for the reaction rates, we take mainly from the conven-
tional set by Bruenn (1985) with some extensions (Sumiyoshi
et al. 2005). We implement the neutrino reactions,

e− + p ←→ νe + n [ecp], (13)

e+ + n ←→ ν̄e + p [aecp], (14)

e− + A ←→ νe + A′ [eca], (15)

for the absorption/emission,

ν + N ←→ ν + N [nsc], (16)

ν + A ←→ ν + A [csc], (17)

for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:

1
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+
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=
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collision
,

(20)

where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
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the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
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with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by
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For the numerical calculation, we rewrite the equation in the
conservative form as
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(5)

We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
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δt

]
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= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by
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where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as
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(10)
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Figure 2. Left: discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial direction corresponds to neutrino
energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right: Lorentz-transformed mesh in the fluid restframe. The blue
lines correspond to the radial lines whereas the black lines are transformed from the concentric circles in the left panel. The brown dots show an isoenergy circle in
the fluid restframe for comparison. Matter is assumed to move upward in this figure.
(A color version of this figure is available in the online journal.)

This is the advection of neutrinos with matter and it should be
evident why the Lagrangian approach is advantageous in dealing
with it.

For comparison, the right panel in Figure 1 describes the same
situation except in the laboratory frame. Here, we assume that
the fluid is advected inward (or toward the left in the figure).
Since the neutrinos should be advected in the same direction
as the fluid in the laboratory frame, the incoming neutrino flux
is larger than the outgoing one, which means that the angular
distribution of neutrinos is anisotropic in this frame. From the
SR point of view, such anisotropies arise from the Doppler
shift and relativistic beaming by Lorentz transformations. The
mathematical expression of SR Boltzmann equations will be
given in Section 4.

If we neglected all SR effects, not distinguishing between the
laboratory and fluid restframes, we would not obtain the neutrino
advection with matter, which is crucial for neutrino trapping in
the collapsing phase. In fact, neutrinos would be left behind as
fluids are advected. The supernova core is not homogeneous
in reality and both matter and neutrino densities are highest at
the center. In the absence of advection, neutrinos would always
flow outward when actually they should move inward, keeping
pace with matter, and be effectively trapped in the core. As we
will show later in Section 7.5, the number density of electron-
type neutrinos becomes significantly smaller near the center
for NR simulations. This, in turn, affects the evolution of the
electron fraction and the size of inner core and eventually all the
supernova dynamics thereafter.

3. DIFFICULTIES IN HANDLING SR EFFECTS

In this section, we give more detailed intuitive explanations
about why SR treatments are not easy with the Sn method, which
we employ in this paper. The main source of difficulty is scat-
tering, particularly scattering between neutrinos and nucleons
(and nuclei). There are no technical challenges, however, with
other reactions such as neutrino absorptions and emissions.5 We
hence focus only on the isoenergetic scatterings in this section.

5 Of course, non-isoenergetic scatterings of electrons and neutrinos and pair
processes are another complication, which will be addressed in future work.

As mentioned in the previous sections, our Boltzmann hydro
code is based on the Eulerian picture, and we discretize six-
dimensional phase space in the laboratory frame, as shown in
the left panel in Figure 2. In this picture, spherical coordinates
in momentum space are adopted with the azimuthal dimension
being collapsed. The radial direction corresponds to neutrino
energy. Although the picture is drawn that way, gridding in each
dimension is not necessarily uniform.

We first consider the isoenergetic scattering under the condi-
tion of fluid being at rest and, as a consequence, the laboratory
frame coincides with the fluid restframe. When a neutrino un-
dergoes isoenergetic scattering, it changes its flight direction
specified by two angles, preserving energy. In the discretized
momentum space, the neutrino moves from one bin to another
with the same radial-grid number. The important thing is that
only the angular grid number is changed. In this case, there is
no difficulty and, indeed, this method has been implemented in
Sumiyoshi & Yamada (2012) and Sumiyoshi et al. (2014).

In the presence of non-vanishing fluid velocities, the problem
becomes qualitatively different. In this case, the laboratory
frame is different from the fluid restframe and they are related
to each other via a Lorentz transformation. The point is that
the Lorentz transformation induces changes in both energy
and angles. These energy shifts and aberrations are determined
by the Doppler factor, which depends on the fluid velocity
and neutrino angles (see Section 4). This is most clearly
demonstrated in the right panel of Figure 2, in which the
spherical coordinates given in the laboratory frame are Lorentz-
transformed to the fluid restframe. It is evident that they are
no longer spherically symmetric and distorted in the latter
frame. This picture summarizes the difficulties in treating
scatterings even if they are isoenergetic. As is well known,
the neutrino distribution function, f, is a Lorentz invariant
and its values at corresponding points in different frames are
identical. The important point, however, is the fact that grid
points are shifted by Lorentz transformations and concentric
(equivalently isoenergetic) spheres in the laboratory frame are
no longer spheres in the fluid restframe. As a consequence,
some interpolations are inevitable when evaluating the collision
terms for scatterings in the fluid restframe if one were to
avoid the v/c expansion. There are, however, several challenges
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Figure 4. Lagrangian remapped grid in the laboratory frame (left panel) and the Lorentz-transformed grid in the fluid restframe (right panel). The energy grid is
isotropic in the fluid restframe whereas it becomes anisotropic in the laboratory frame. The angular grid, on the other hand, is uniform in the laboratory frame.
(A color version of this figure is available in the online journal.)

Figure 5. Schematic pictures of the energy spectra of outgoing neutrinos in
the laboratory (upper) and fluid restframes (middle). Matter is assumed to
be optically thin and flows inward at piecewise constant velocities with a
discontinuity in the middle (lower picture). The two red crosses in the bottom
picture are the locations where we measure the neutrino spectra. The spectrum
should be unchanged across the discontinuity in the laboratory frame whereas
it will be blueshifted in the fluid restframe.
(A color version of this figure is available in the online journal.)

as long as we work in the laboratory frame, energy-derivative
terms do not appear explicitly on the left-hand side of the Boltz-
mann equation and the advection on the LFG is particularly
simple. It should be repeated that the LFG is a grid only for
temporary use to treat the neutrino advection. Accordingly, f on
the LFG, which is obtained by interpolation in our method, is
also a temporal variable. Instead, f on the LRG is the quantity
to be solved and stored in our code.

6. NUMERICAL IMPLEMENTATIONS

In this section, we explain the detailed numerical algorithm
used to implement the various elements described above in our

Figure 6. Flow chart for our Boltzmann hydro solver.
(A color version of this figure is available in the online journal.)

Boltzmann hydro solver, paying particular attention to the usage
of different energy grids. Figure 6 summarizes the multiple
steps needed to update a numerical solution from t = tn to
tn+1, where the superscripts represent the time steps. In the
following sections, we provide detailed descriptions of each
step in sequential order.

6.1. Step 1: Hydrodynamical Evolutions

In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
on the so-called central scheme with an explicit time evolu-
tion (Kurganov & Tadmor 2000; Nagakura & Yamada 2008;
Nagakura et al. 2011). The code was successfully applied to
the simulations of standing accretion shock instability in the
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Figure 4. Lagrangian remapped grid in the laboratory frame (left panel) and the Lorentz-transformed grid in the fluid restframe (right panel). The energy grid is
isotropic in the fluid restframe whereas it becomes anisotropic in the laboratory frame. The angular grid, on the other hand, is uniform in the laboratory frame.
(A color version of this figure is available in the online journal.)

Figure 5. Schematic pictures of the energy spectra of outgoing neutrinos in
the laboratory (upper) and fluid restframes (middle). Matter is assumed to
be optically thin and flows inward at piecewise constant velocities with a
discontinuity in the middle (lower picture). The two red crosses in the bottom
picture are the locations where we measure the neutrino spectra. The spectrum
should be unchanged across the discontinuity in the laboratory frame whereas
it will be blueshifted in the fluid restframe.
(A color version of this figure is available in the online journal.)
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mann equation and the advection on the LFG is particularly
simple. It should be repeated that the LFG is a grid only for
temporary use to treat the neutrino advection. Accordingly, f on
the LFG, which is obtained by interpolation in our method, is
also a temporal variable. Instead, f on the LRG is the quantity
to be solved and stored in our code.
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In this section, we explain the detailed numerical algorithm
used to implement the various elements described above in our
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Boltzmann hydro solver, paying particular attention to the usage
of different energy grids. Figure 6 summarizes the multiple
steps needed to update a numerical solution from t = tn to
tn+1, where the superscripts represent the time steps. In the
following sections, we provide detailed descriptions of each
step in sequential order.

6.1. Step 1: Hydrodynamical Evolutions

In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
on the so-called central scheme with an explicit time evolu-
tion (Kurganov & Tadmor 2000; Nagakura & Yamada 2008;
Nagakura et al. 2011). The code was successfully applied to
the simulations of standing accretion shock instability in the
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Figure 4. Lagrangian remapped grid in the laboratory frame (left panel) and the Lorentz-transformed grid in the fluid restframe (right panel). The energy grid is
isotropic in the fluid restframe whereas it becomes anisotropic in the laboratory frame. The angular grid, on the other hand, is uniform in the laboratory frame.
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the laboratory (upper) and fluid restframes (middle). Matter is assumed to
be optically thin and flows inward at piecewise constant velocities with a
discontinuity in the middle (lower picture). The two red crosses in the bottom
picture are the locations where we measure the neutrino spectra. The spectrum
should be unchanged across the discontinuity in the laboratory frame whereas
it will be blueshifted in the fluid restframe.
(A color version of this figure is available in the online journal.)
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the LFG, which is obtained by interpolation in our method, is
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Boltzmann hydro solver, paying particular attention to the usage
of different energy grids. Figure 6 summarizes the multiple
steps needed to update a numerical solution from t = tn to
tn+1, where the superscripts represent the time steps. In the
following sections, we provide detailed descriptions of each
step in sequential order.

6.1. Step 1: Hydrodynamical Evolutions

In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
on the so-called central scheme with an explicit time evolu-
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the simulations of standing accretion shock instability in the
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isotropic in the fluid restframe whereas it becomes anisotropic in the laboratory frame. The angular grid, on the other hand, is uniform in the laboratory frame.
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Figure 5. Schematic pictures of the energy spectra of outgoing neutrinos in
the laboratory (upper) and fluid restframes (middle). Matter is assumed to
be optically thin and flows inward at piecewise constant velocities with a
discontinuity in the middle (lower picture). The two red crosses in the bottom
picture are the locations where we measure the neutrino spectra. The spectrum
should be unchanged across the discontinuity in the laboratory frame whereas
it will be blueshifted in the fluid restframe.
(A color version of this figure is available in the online journal.)
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of different energy grids. Figure 6 summarizes the multiple
steps needed to update a numerical solution from t = tn to
tn+1, where the superscripts represent the time steps. In the
following sections, we provide detailed descriptions of each
step in sequential order.

6.1. Step 1: Hydrodynamical Evolutions

In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
on the so-called central scheme with an explicit time evolu-
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In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
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2) Moving Mesh Approach

Proto-neutron star moves by non-spherically symmetric distribution 
of the matter around it. 3D Boltzmann-Hydrodynamical Code: II Moving Mesh on PNS 3

Fig. 1.— Schematic picture for the moving mesh in the 3+1 foliation of spacetime. Red line indicates the world line of coordinate origin.
Concentric circles and radial rays on each spatial hypersurface (Σt) denote the polar grid. The coordinate origin traces the motion of PNS.
See the text in more detail.

assumed to be massless. ω(0), ω(θ̄), ω(φ̄) are given as

ω(0) ≡ ν−2pαpβ∇αeβ
(0),

ω(θ̄) ≡
3
∑

i=1

ωi
∂ℓ(i)

∂θ̄
,

ω(φ̄) ≡
3
∑

i=2

ωi
∂ℓ(i)

∂φ̄
,

ωi ≡ ν−2pαpβ∇αeβ
(i). (3)

As shown in Shibata et al. (2014), these ω’s can be ex-
pressed with the Ricci rotation coefficients. Srad on the
right hand side of Eq. (1) originates from the collision
term for neutrino-matter interactions.

In the 3+1 formulation of GR, the line element is ex-
pressed as

ds2 = (−α2 + βkβk)dt2 + 2βidtdxi + γijdxidxj , (4)

where α, βi and γij denote the lapse function, shift vector
and spatial 3-metric, respectively. In our extended Boltz-
mann code, the time-like basis eα

(0) is chosen so that it
should coincide with the unit vector nα normal to the
spatial hypersurface with t = const. This choice is a nat-
ural extension from our previous SR Boltzmann solver

(see Section 3 for more details). Then three other spa-
tial tetrad bases are taken so that they should be tan-
gential to the spatial hypersurface. In this paper we as-
sume that the spacetime is flat and is foliated with flat
spatial hypersurfaces, on which we deploy the polar co-
ordinates (x1 = r, x2 = θ, x3 = φ). Then non-vanishing
components of the 3 metric are γrr = 1, γθθ = r2 and
γφφ = r2sinθ2. The spatial tetrad bases are chosen so
that the e(1) be parallel to the radial coordinate, and
e(2) be tangential to the surface spanned by ∂t and ∂θ,
and e(3) be orthogonal to the other two:

eα
(1) = (0, γ−1/2

rr , 0, 0)

eα
(2) =

(

0,−
γ−1/2

rθ
√

γrr(γrrγθθ − γ2
rθ)

,
√

γrr

γrrγθθ − γ2
rθ

, 0

)

eα
(3) =

(

0,
γrφ

√

γφφ
,

γθφ

√

γφφ
,
√

γφφ

)

. (5)

We refer to this orthonormal frame as the O-frame in the
following. In accord with the above foliation of spacetime
we set α = 1. We utilize the shift vector to deal with the
motion of the spatial coordinates (see Figure 1). In fact,
we set βi = V̄ i, where V̄ i is approximately the velocity
of PNS measured in the O-frame (see the next section
for details). Note that although the shift vector is given

α: lapse function βi : shift vector
n: unit vector normal to the spatial hyper-surface with t = constant

Boltzmann-Hydro equation in the 3+1 formalism of general relativity (GR)

(Nagakura et al. 2016)
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中性子星の質量と半径

硬

柔らかい 

一様な原子核物質に対し非相対論的なスキルム型を適用。 
多種の原子核を単一の原子核で近似。

一様な原子核物質に対し相対論的平均場理論を適用。 
多種の原子核を単一の原子核で近似。

FS EOS (Furusawa et al.)
一様な原子核物質に対し相対論的平均場理論を適用。 
多核種を考慮。

一様な原始核物質に対し多体理論により計算された現実
的な核力を適用。多核種を考慮。

重力波観測、半径の評価、最大質量の全ての制限を満たしている！

反応率を正確に 
計算できない

3) Furusawa Togashi EOS
(Furusawa et al. 2017)
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6.3. Grey zone
For a solution of the radiation fields in the optically grey zone, in general, it is

necessary to fully solve the radiation transfer equation in general relativity. However,
it is not possible in the framework of truncated moment formalism and far beyond
the scope of this paper. We propose an approximate method which is essentially the
same as the variable Eddington factor method.14) In this prescription, P ij

(ν) is given
by

P ij
(ν) =

3χ − 1
2

(P ij
(ν))thin +

3(1 − χ)
2

(P ij
(ν))thick, (6.21)

where χ is the so-called variable Eddington factor, which is χ = 1/3 in the optically
thick limit and χ = 1 in the optically thin limit. Following Ref. 14), we choose that
χ is a function of F̄ , for which in general relativity, the candidates are

F̄ :=
(γijF i

(ν)F
j

(ν)

E2
(ν)

)1/2

, (6.22)

and

F̄ :=
(hαβH α

(ν)H
β

(ν)

J 2
(ν)

)1/2

. (6.23)

For the optically thick and thin limits, F̄ = 0 and F̄ = 1, respectively. For giving a
correct value of F̄ in the optically thick limit, Eq. (6.23) should be chosen because
H α

(ν) should be zero in the comoving frame; if the fluid has a large uniform velocity,
the value of F̄ in Eq. (6.22) would be highly different from zero even in an optically
thick medium. For giving a correct value of F̄ in the optically thin limit, both
Eqs. (6.22) and (6.23) can be chosen, because in such a limit, M αβ

(ν) is proportional
to J(ν)p

αpβ (pα is a null vector) and F̄ = 1 for the null fluid in both definitions (see
§3). For this reason, we choose Eq. (6.23) for F̄ .

With the choice of (6.23), F̄ obeys an algebraic equation for a given set of E(ν)

and F j
(ν). This can be written in the form

F̄ 2 =
hαγM αβ

(ν) uβM γσ
(ν) uσ

M αβ
(ν) uαuβ

, (6.24)

where for M αβ
(ν) , Eq. (3.29) is used with Eq. (6.21). In numerical simulation, we have

to solve this equation numerically.
Livermore proposed several functions for χ(F̄ ), e.g.,

χ =
3 + 4F̄ 2

5 + 2
√

4 − 3F̄ 2
. (6.25)
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term, ∂(νJ(ν))/∂ν, for simplicity. The reason is that in its presence, P ij
(ν) is not

written by E(ν) and F i
(ν) in a straightforward manner (although it is possible to do

in an approximate manner). For the frequency-integrated case, this term vanishes,
and hence, we may say that the radiation viscosity effect is taken into account in
a frequency-averaged way. However, in this treatment, the low-energy neutrinos,
which should not contribute to the radiation viscosity for degenerate neutrinos, may
incorrectly play a role. To avoid this unphysical contribution, it will be appropriate to
artificially reduce l̄(ν) to zero for hν <∼ µc − kbT when treating degenerate neutrinos.

Assuming that Eq. (6.13) holds with the omission of the third term, we have
the relations

E(ν) =
[4w2 − 1

3
− σ0

]
J(ν) + 2H(ν)jV

j , (6.14)

F(ν)i =
[4
3
wui + σi

]
J(ν) + wH(ν)i +

ui

w
H(ν)jV

j , (6.15)

where V i = γijuj (Vi = ui), and

σ0 =
4l̄(ν)

15
σαβnαnβ, σi =

4l̄(ν)

15
σαβnαγβi. (6.16)

Also, we used H(ν)αuα = 0 and H 0
(ν) = (αw)−1H(ν)iV

i. Equations (6.14) and (6.15)
constitute simultaneous equations for J(ν) and H(ν)i. Inverting them yields

J(ν) =
[2w2 + 1

3
+ σ0

]−1
[
(2w2 − 1)E(ν) − 2wF k

(ν)uk

]
, (6.17)

H(ν)i =
1
w

F(ν)i +
1

w(2w2 + 1 + 3σ0 )

[
−[4w3ui + 3(2w2 − 1)σi + 3σ0wui]E(ν)

+[(4w2 + 1)ui + 6wσi + 3σ0ui]F k
(ν)uk

]
. (6.18)

Note that F k
(ν)uk = F(ν)kV

k but H(ν)kV
k ̸= H k

(ν)uk; H k
(ν) = (γkl−βkγlmum/αw)H(ν)l.

Also wσ0 = −σiV i. Then, P ij
(ν) is given by

P ij
(ν) = J(ν)

[γij + 4V iV j

3
−

4l̄(ν)

15
σklγ i

k γ j
l

]
+ H i

(ν)V
j + H j

(ν)V
i, (6.19)

where J(ν) and H k
(ν)(= γk

µH µ
(ν)) are given by Eqs. (6.17) and (6.18). With this

closure relation for P ij
(ν) , the necessary condition for the radiation fields, gαβTαβ

rad = 0,
is guaranteed to be satisfied.

We note that with the closure relation (6.19), the first-order term in l(ν) may be
accidentally larger than the zeroth-order term for a high value of σij . Thus, it may
be necessary to change the definition of l̄(ν) as

l̄(ν) = min
[ 1
κ̄(ν)

, Cσ

( V kuk

σαβσαβ

)1/2]
, (6.20)

where Cσ is a coefficient smaller than unity.
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where J(ν) and H k
(ν)(= γk

µH µ
(ν)) are given by Eqs. (6.17) and (6.18). With this

closure relation for P ij
(ν) , the necessary condition for the radiation fields, gαβTαβ

rad = 0,
is guaranteed to be satisfied.

We note that with the closure relation (6.19), the first-order term in l(ν) may be
accidentally larger than the zeroth-order term for a high value of σij . Thus, it may
be necessary to change the definition of l̄(ν) as
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We note that in an FLD approximation, the first-order solution for H α
(ν) is mod-

ified as

H α
(ν) = −

l̃(ν)

3 + l̃(ν)J
−1
(ν)u

γ∇γJ(ν)

h αβ
[
∇βJ(ν) +

(
4J(ν) −

∂

∂ν
(νJ(ν))

)
uγ∇γuβ

]
,

(5.23)

and is then substituted in Eq. (3.22). With this prescription, the equation for J(ν)

reduces to a wave equation with the characteristic speed ∼ c for the case that l̃(ν) is
much longer than a characteristic length scale of the system.

§6. Closure relations

In the truncated moment formalism derived in §3, we proposed to solve the
equations for E(ν) and F i

(ν) but not to solve that for P ij
(ν) , which is assumed to

be determined in terms of E(ν) and F i
(ν). In this section, we propose a physically

reasonable closure relation.

6.1. Optically thin case
In the limit that the optical depth is zero, the emission, absorption, and scat-

tering are negligible. When the source term of the radiation field equations can be
neglected, the radiation freely propagates, and the radiation moments should obey
a wave equation with no source.

One example for such region is the asymptotically flat region, far from the ra-
diation source where curved spacetime effects as well as hydrodynamic effects play
a tiny role (e.g., we may consider uµ ≈ nµ, J(ν) ≈ E(ν), and H α

(ν) ≈ F α
(ν) as already

mentioned in §§2 and 3). Thus, any closure relation assumed has to satisfy at least
the equations in the flat spacetime.

For the flat spacetime, we obtain the equation for F j
(ν) from Eq. (3.37)

∂j(
√

ηF j
(ν)) = 0, (6.1)

where η is the determinant of the flat three metric ηij . This provides a reasonable
solution of F j

(ν) for the spatial infinity; for the spherically symmetric flow, F r
(ν) ∝ r−2 ,

and for the plane symmetric flow, F i
(ν) = constant for the flow direction. On the

other hand, Eq. (3.38) gives

∂k(
√

ηP k
(ν) j) =

√
η

2
P ik

(ν) ∂jηik. (6.2)

For an appropriate solution of E(ν), the following closure relation is the first
candidate (and is that we finally choose):

P αβ
(ν) = E(ν)

F α
(ν)F

β
(ν)

γijF i
(ν)F

j
(ν)

. (6.3)
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as

[√
1 − µ2

ν sin φν

r sin θ

∂f

∂φ

]

=
[√

1 − µ2
ν sin φν

r
√

1 − µ2

∂f

∂φ

]

= 3
2

r2
Ir

− r2
Ir−1

r3
Ir

− r3
Ir−1

(
1 − µν

2
jθ

) 1
2

sin φν jφ

(
1 − µ2

iθ

) 1
2

× 1
dφiφ

[
fIφ

− fIφ−1
]
. (A29)

The evaluation of fIφ
is made by

sin φν jφ
fIφ

=
sin φν jφ

+ |sin φν jφ
|

2

[
βIφ

fiφ +
(
1 − βIφ

)
fiφ+1

]

+
sin φν jφ

− |sin φν jφ
|

2

[(
1 − βIφ

)
fiφ + βIφ

fiφ+1
]
,

(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

⟨ε⟩ = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

⟨µν⟩ = f r
ν

nν

, (A34)

where the radial number flux is given by

f r
ν =

∫
dεε2

(2π )3

∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
ν =

∫
dε ε2

(2π )3

∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

⟨µ2
ν⟩ = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼ 30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼ 130 MB to store the neutrino distribution
for each species. It takes ∼ 100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼ 900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼ 6 TB for the program and ∼ 26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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The polar and azimuthal fluxes are obtained by

f θ
ν =

∫
dε ε2

(2π )3

∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

⟨µ2
ν⟩ = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼ 30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼ 130 MB to store the neutrino distribution
for each species. It takes ∼ 100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼ 900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼ 6 TB for the program and ∼ 26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as

[√
1 − µ2

ν sin φν

r sin θ

∂f

∂φ

]

=
[√

1 − µ2
ν sin φν

r
√

1 − µ2

∂f

∂φ

]

= 3
2

r2
Ir

− r2
Ir−1

r3
Ir

− r3
Ir−1

(
1 − µν

2
jθ

) 1
2

sin φν jφ

(
1 − µ2

iθ

) 1
2

× 1
dφiφ

[
fIφ

− fIφ−1
]
. (A29)

The evaluation of fIφ
is made by

sin φν jφ
fIφ

=
sin φν jφ

+ |sin φν jφ
|

2

[
βIφ

fiφ +
(
1 − βIφ

)
fiφ+1

]

+
sin φν jφ

− |sin φν jφ
|

2

[(
1 − βIφ

)
fiφ + βIφ

fiφ+1
]
,

(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

⟨ε⟩ = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

⟨µν⟩ = f r
ν

nν

, (A34)

where the radial number flux is given by

f r
ν =

∫
dεε2

(2π )3

∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
ν =

∫
dε ε2

(2π )3

∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

⟨µ2
ν⟩ = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼ 30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼ 130 MB to store the neutrino distribution
for each species. It takes ∼ 100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼ 900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼ 6 TB for the program and ∼ 26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.

31

1 :1 - -

The Astrophysical Journal Supplement Series, 199:17 (32pp), 2012 March Sumiyoshi & Yamada

expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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ν sin φν
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The evaluation of fIφ
is made by

sin φν jφ
fIφ

=
sin φν jφ

+ |sin φν jφ
|

2

[
βIφ

fiφ +
(
1 − βIφ

)
fiφ+1

]

+
sin φν jφ

− |sin φν jφ
|

2
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1 − βIφ

)
fiφ + βIφ

fiφ+1
]
,

(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

⟨ε⟩ = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

⟨µν⟩ = f r
ν

nν

, (A34)

where the radial number flux is given by

f r
ν =

∫
dεε2

(2π )3

∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
ν =

∫
dε ε2

(2π )3

∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

⟨µ2
ν⟩ = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼ 30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼ 130 MB to store the neutrino distribution
for each species. It takes ∼ 100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼ 900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼ 6 TB for the program and ∼ 26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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6.3. Grey zone
For a solution of the radiation fields in the optically grey zone, in general, it is

necessary to fully solve the radiation transfer equation in general relativity. However,
it is not possible in the framework of truncated moment formalism and far beyond
the scope of this paper. We propose an approximate method which is essentially the
same as the variable Eddington factor method.14) In this prescription, P ij

(ν) is given
by

P ij
(ν) =

3χ − 1
2

(P ij
(ν))thin +

3(1 − χ)
2

(P ij
(ν))thick, (6.21)

where χ is the so-called variable Eddington factor, which is χ = 1/3 in the optically
thick limit and χ = 1 in the optically thin limit. Following Ref. 14), we choose that
χ is a function of F̄ , for which in general relativity, the candidates are

F̄ :=
(γijF i

(ν)F
j

(ν)

E2
(ν)

)1/2

, (6.22)

and

F̄ :=
(hαβH α

(ν)H
β

(ν)

J 2
(ν)

)1/2

. (6.23)

For the optically thick and thin limits, F̄ = 0 and F̄ = 1, respectively. For giving a
correct value of F̄ in the optically thick limit, Eq. (6.23) should be chosen because
H α

(ν) should be zero in the comoving frame; if the fluid has a large uniform velocity,
the value of F̄ in Eq. (6.22) would be highly different from zero even in an optically
thick medium. For giving a correct value of F̄ in the optically thin limit, both
Eqs. (6.22) and (6.23) can be chosen, because in such a limit, M αβ

(ν) is proportional
to J(ν)p

αpβ (pα is a null vector) and F̄ = 1 for the null fluid in both definitions (see
§3). For this reason, we choose Eq. (6.23) for F̄ .

With the choice of (6.23), F̄ obeys an algebraic equation for a given set of E(ν)

and F j
(ν). This can be written in the form

F̄ 2 =
hαγM αβ

(ν) uβM γσ
(ν) uσ

M αβ
(ν) uαuβ

, (6.24)

where for M αβ
(ν) , Eq. (3.29) is used with Eq. (6.21). In numerical simulation, we have

to solve this equation numerically.
Livermore proposed several functions for χ(F̄ ), e.g.,

χ =
3 + 4F̄ 2

5 + 2
√

4 − 3F̄ 2
. (6.25)
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as

[√
1 − µ2

ν sin φν

r sin θ

∂f

∂φ

]

=
[√

1 − µ2
ν sin φν

r
√

1 − µ2

∂f

∂φ

]

= 3
2

r2
Ir

− r2
Ir−1

r3
Ir

− r3
Ir−1

(
1 − µν

2
jθ

) 1
2

sin φν jφ

(
1 − µ2

iθ

) 1
2

× 1
dφiφ

[
fIφ

− fIφ−1
]
. (A29)

The evaluation of fIφ
is made by

sin φν jφ
fIφ

=
sin φν jφ

+ |sin φν jφ
|

2

[
βIφ

fiφ +
(
1 − βIφ

)
fiφ+1

]

+
sin φν jφ

− |sin φν jφ
|

2

[(
1 − βIφ

)
fiφ + βIφ

fiφ+1
]
,

(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

⟨ε⟩ = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

⟨µν⟩ = f r
ν

nν

, (A34)

where the radial number flux is given by

f r
ν =

∫
dεε2

(2π )3

∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
ν =

∫
dε ε2

(2π )3

∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

⟨µ2
ν⟩ = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼ 30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼ 130 MB to store the neutrino distribution
for each species. It takes ∼ 100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼ 900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼ 6 TB for the program and ∼ 26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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