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Radiation Hydrodynamics Simulations
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Ohsuga et al. (2005)
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Ohsuga et al. (2005) conducted

| 2D radiation HD simulations of
| the supercritical accretion flows
| around a black hole

| « Hot outflow with velocity of

0.1c is formed around the
rotation axis by strong
radiation pressure

 The radiation Is important for

the outflow formation and
structure of the accretion flow



General Relativistic Radiation MHD
Simulations (M1 method)

Takahashi et al. (2016) carried out 3D general relativistic
radiation MHD simulations of accretion flows.

The jet is formed by the radiation pressure and
collimated by the Lorentz force. M1 method

J collision F==

Takahashi et al. (2016)



Basic Equations for Fluid

Mass conservation equation
Or(V—=gpu’) + 0i(V—gpu') =
Energy momentum conservation equation
0(V=gT1)+0i(V=9T}) = V=gT3T V=G
Induction equation
0i(vV=gB") = ~0;[V/=g (b u' b )]
Radiation force
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Radiation Transfer Equation
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In order to solve this equation, we need to obtain the
radiation pressure P — DE

M1 method assumes that the Eddington tensor is below in
order to close these equations (Gonzalez et al. 2007)
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Radiation Transfer Equation
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* In order to solve this equation, we need to obtain the
radiation pressure P — DE

« M1 method assumes that the Eddington tensor is below In
order to close these equations (Gonzalez et al. 2007)
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Simple flowchart

Boltzmann equation
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Energy/momentum equation for radiation

O0(V=9R,)+0i(vV=gR},) = V=9gR5T . —v/—9G,

Boltzmann equation Update the specific intensity
v OINE)
Eddington tensor DY = /In n dQ// [dQ

—— _ Update the radiation energy and
Momentum equation radiation energy flux




Boltzmann Equation
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Radiative Transfer around
Schwarzschild Black Hole

Test for advection term and
general relativistic effect

The radius of the circular
photon orbit iIs 3Rg

Three beams are injected from
¢@=0 boundary around r =
2.5Rg, 3Rg, and 4Rg

Beam width is 0.2Rg (6 grids)




Radiative Transfer around
Schwarzschild Black Hole

Beams are bent by general
relativistic effect

The middle beam has
circular orbit

"he iInner beam falls into
the black hole

"he outer beam can
escape from the black hole

The difference from the
geodesic Is due to the

discreteness of AB~1-2°




Radiative Transfer around
Kerr Black Hole (a=0.9 )
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Other conditions are the same as previous simulation
For prograde model, the radius of the circular photon
orbit is ~Rg
For retrograde model, it is ~4Rg
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Beam Crossing Test

M1 method

Test for advection term
Grids (x, y, 8) = (200, 200, 22)

M1 method cannot solve the
beam crossing since the
radiation collides each other

Our method

Our method can solve beam
crossing successfully without
collision




Shadow Test

- Test for absorption term

- Values of fluid are fixed

- We put two clumps with kabs=1.5

- Bottom clump is

- We Inject 2 rays
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Shadow Test

log Erad

- We can get two shadows

- This result iIs consistent

of that for Boltzmann
equation




Interaction with optically thick cloud
(M1 method)

Optically thick cloud  * Test for scattering term

for scattering « Optically thick cloud for
scattering with velocity of

Radiation 0.6¢ locates at (x,y)=(3, 1.5)
—— « M1 method cannot solve

3.5¢

loiR‘é‘L this test

56 Scattered radiation
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Interaction with optically thick cloud
(our method)

RO Scattered radiation
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Our method can solve the interaction of radiation with
optically thick cloud for scattering without non-physical
collision of radiation.



Initial condition

log p

We start simulations from an
equilibrium torus given by
F 2 Fishbone & Moncrief (1976)

We assume the weak poloidal
magnetic field in the torus

The radiation energy is assumed
to be much small

(Nr, N8, N8, N¢) = (300, 300, 8,
16)
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Time evolution of the density

M1 method our method
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Collision around the rotation axis

M1 method our method
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e For our method, the rr-component of the Eddington tensor
becomes smaller and 80-component becomes larger

e This can be due to the collision around the rotation axis



Collision around the rotation axis

M1 method Rotation axis
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When the radiation collides around the rotation axis, the flux in 6
direction becomes zero

 The rr-component of the Eddington tensor becomes large



Collision around the rotation axis

Rotation axis our method
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 The rr-component of the Eddington tensor becomes smaller
since the specific intensity in 8-direction remains
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Mass accretion rate
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Summary

We perform some test simulations and apply to
the accretion flow solving the Boltzmann equation

Our method Is superior to M1 method (e.g. beam
crossing, interaction of the optically thick cloud)

Our scheme can solve the radiation transfer
around the rotation axis more exactly

We will perform simulations with various density,
magnetic fields, spin parameter
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