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発表内容

1) ３次元流体ソルバーの検証

2) ６次元ボルツマンソルバーの検証

4) 半径10km付近の軸付近の数値振動抑制とクーラン条件の緩和

3) ボルツマンハイドロコードの効率改善

5) Furusawa-Togashi EOSコードへのアップグレード

6) ボルツマンハイドロコードによる空間三次元計算の実行



Euler Equations

Continuity Equation:

Equations of Motion:

Energy Equation:

1D Poisson's equation for gravity:

Time-Evolution Equation of Electron Number:

EOS table of Nuclear Matter:                       
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ρ : density, v: velocity, P: pressure, e: internal energy, ψ: the gravitational potential,

mA: the atomic mass unit, 
G : the gravitational constant (=6.67×10−8[cm3g−1s2 ]), Ye: electron fraction, 

Γ: deleptonization rate ( ≡ Γνe − Γνe ),

1) ３次元流体ソルバーの検証

P = P (ρ,T ,Ye )

T : temperature,
G0 : neutrino heating rate, Gi : neutrino radiation pressure,

Γs : neutrino reaction rate



1) ３次元流体ソルバーの検証
ZEUS-MP/2コードで計算した結果（Iwakami(2014)）と定性的に一致。
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2) 6次元ボルツマンソルバーの検証

Boltzmann Equation
Neutrino Radiation
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2) 6次元ボルツマンソルバーの検証
Collision Terms

The Astrophysical Journal Supplement Series, 199:17 (32pp), 2012 March Sumiyoshi & Yamada

the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
equation, Equation (1), in the spherical coordinate system is
expressed as

1
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with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by
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For the numerical calculation, we rewrite the equation in the
conservative form as
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(5)

We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
1
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emis-abs
= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by
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where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as
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the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
equation, Equation (1), in the spherical coordinate system is
expressed as
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,

(3)

with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by
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(4)

For the numerical calculation, we rewrite the equation in the
conservative form as
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∂
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δt
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collision
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(5)

We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
1
c

δf

δt

]

emis-abs
= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by

[
1
c

δf

δt

]

scat
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rscat(ε, Ω; ε′, Ω′)f (ε, Ω)

× [1 − f (ε′, Ω′)] +
∫

dε′ε′2

(2π )3

∫
dΩ′Rscat(ε′, Ω′; ε, Ω)

× f (ε′, Ω′)[1 − f (ε, Ω)], (9)

where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as

[
1
c

δf

δt

]

scat
= − ε2

(2π )3

∫
dΩ′Rscat(Ω; Ω′)[f (ε, Ω)−f (ε, Ω′)],

(10)
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the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
equation, Equation (1), in the spherical coordinate system is
expressed as
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with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by
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For the numerical calculation, we rewrite the equation in the
conservative form as
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(5)

We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
1
c

δf

δt

]

emis-abs
= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by

[
1
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]

scat
= −

∫
dε′ε′2
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∫
dΩ′Rscat(ε, Ω; ε′, Ω′)f (ε, Ω)

× [1 − f (ε′, Ω′)] +
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∫
dΩ′Rscat(ε′, Ω′; ε, Ω)

× f (ε′, Ω′)[1 − f (ε, Ω)], (9)

where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as

[
1
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δf

δt

]

scat
= − ε2

(2π )3

∫
dΩ′Rscat(Ω; Ω′)[f (ε, Ω)−f (ε, Ω′)],
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with the relation Rscat(Ω′; Ω) = Rscat(Ω; Ω′). The collision term
for the pair process is expressed by
[

1
c

δf

δt

]

pair
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rpair-anni(ε, Ω; ε′, Ω′)

× f (ε, Ω)f (ε′, Ω′) +
∫

dε′ε′2

(2π )3

∫
dΩ′Rpair-emis(ε, Ω; ε′, Ω′)

× [1 − f (ε, Ω)][1 − f (ε′, Ω′)], (11)

where f (ε′, Ω′) denotes the distribution of anti-neutrinos. From
the detailed balance, the following relation holds:

Rpair-anni(ε, Ω; ε′, Ω′) = Rpair-emis(ε, Ω; ε′, Ω′)eβ(ε+ε′). (12)

We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.

As for the reaction rates, we take mainly from the conven-
tional set by Bruenn (1985) with some extensions (Sumiyoshi
et al. 2005). We implement the neutrino reactions,

e− + p ←→ νe + n [ecp], (13)

e+ + n ←→ ν̄e + p [aecp], (14)

e− + A ←→ νe + A′ [eca], (15)

for the absorption/emission,

ν + N ←→ ν + N [nsc], (16)

ν + A ←→ ν + A [csc], (17)

for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:

1
c

f n+1
i − f n
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∆t
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∂r
(r2f )
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+

[

−
√

1 − µ2
ν

r

cos θ

sin θ

∂

∂φν

(sin φνf )

]n+1

=
[

1
c

δf

δt

]n+1

collision
,

(20)

where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
equation, Equation (1), in the spherical coordinate system is
expressed as
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with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by
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For the numerical calculation, we rewrite the equation in the
conservative form as
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We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
1
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δt

]

emis-abs
= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by

[
1
c

δf

δt

]

scat
= −

∫
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∫
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∫
dΩ′Rscat(ε′, Ω′; ε, Ω)

× f (ε′, Ω′)[1 − f (ε, Ω)], (9)

where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as

[
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]
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= − ε2
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∫
dΩ′Rscat(Ω; Ω′)[f (ε, Ω)−f (ε, Ω′)],
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with the relation Rscat(Ω′; Ω) = Rscat(Ω; Ω′). The collision term
for the pair process is expressed by
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pair
= −
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where f (ε′, Ω′) denotes the distribution of anti-neutrinos. From
the detailed balance, the following relation holds:

Rpair-anni(ε, Ω; ε′, Ω′) = Rpair-emis(ε, Ω; ε′, Ω′)eβ(ε+ε′). (12)

We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.

As for the reaction rates, we take mainly from the conven-
tional set by Bruenn (1985) with some extensions (Sumiyoshi
et al. 2005). We implement the neutrino reactions,

e− + p ←→ νe + n [ecp], (13)

e+ + n ←→ ν̄e + p [aecp], (14)

e− + A ←→ νe + A′ [eca], (15)

for the absorption/emission,

ν + N ←→ ν + N [nsc], (16)

ν + A ←→ ν + A [csc], (17)

for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:
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f n+1
i − f n
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+
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−
√
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ν

r
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sin θ

∂

∂φν

(sin φνf )

]n+1

=
[

1
c

δf

δt

]n+1

collision
,

(20)

where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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with the relation Rscat(Ω′; Ω) = Rscat(Ω; Ω′). The collision term
for the pair process is expressed by
[

1
c

δf

δt

]

pair
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rpair-anni(ε, Ω; ε′, Ω′)

× f (ε, Ω)f (ε′, Ω′) +
∫

dε′ε′2

(2π )3
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dΩ′Rpair-emis(ε, Ω; ε′, Ω′)

× [1 − f (ε, Ω)][1 − f (ε′, Ω′)], (11)

where f (ε′, Ω′) denotes the distribution of anti-neutrinos. From
the detailed balance, the following relation holds:

Rpair-anni(ε, Ω; ε′, Ω′) = Rpair-emis(ε, Ω; ε′, Ω′)eβ(ε+ε′). (12)

We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.

As for the reaction rates, we take mainly from the conven-
tional set by Bruenn (1985) with some extensions (Sumiyoshi
et al. 2005). We implement the neutrino reactions,

e− + p ←→ νe + n [ecp], (13)

e+ + n ←→ ν̄e + p [aecp], (14)

e− + A ←→ νe + A′ [eca], (15)

for the absorption/emission,

ν + N ←→ ν + N [nsc], (16)

ν + A ←→ ν + A [csc], (17)

for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:

1
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f n+1
i − f n

i

∆t
+

[
µν

r2

∂

∂r
(r2f )

]n+1

+

[√
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ν cos φν

r sin θ

∂
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]n+1

+

(√
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∂f
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+
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+
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−
√
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sin θ

∂
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]n+1

=
[

1
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δf
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]n+1

collision
,

(20)

where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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R (ε, Ω) : reaction rate (see Bruenn1985)

Rpair-emis (ε,  Ω;  ε ',  Ω ') = Rpair-anni (ε,  Ω;  ε ',  Ω ')e−β (ε+ε ')

the angle-averaged distribution in the previous time step.
, which is 

The Astrophysical Journal Supplement Series, 199:17 (32pp), 2012 March Sumiyoshi & Yamada

the transfer equation in 3D and will make numerical efforts to
handle the collision term in a next step of the development.

Fixing the framework in the inertial frame, the Boltzmann
equation, Equation (1), in the spherical coordinate system is
expressed as

1
c

∂f in

∂t
+ cos θν

∂f in

∂r
+

sin θν cos φν

r

∂f in

∂θ

+
sin θν sin φν

r sin θ

∂f in

∂φ
+

sin2 θν

r

∂f in

∂ cos θν

− sin θν sin φν

r

cos θ

sin θ

∂f in

∂φν

=
[

1
c

δf in

δt

]

collision
,

(3)

with the definition of the neutrino direction angles (Pomraning
1973). We remark that there is neither a velocity-dependent term
nor energy derivative in the equation in the inertial frame being
different from that in the comoving frame. Choosing the angle
variable µν = cos θν instead of θν , the equation can be written
by

1
c

∂f in

∂t
+ µν

∂f in

∂r
+

√
1 − µ2

ν cos φν

r

∂f in

∂θ

+

√
1 − µ2

ν sin φν

r sin θ

∂f in

∂φ
+

1 − µ2
ν

r

∂f in

∂µν

−
√

1 − µ2
ν sin φν

r

cos θ

sin θ

∂f in

∂φν

=
[

1
c

δf in

δt

]

collision
.

(4)

For the numerical calculation, we rewrite the equation in the
conservative form as

1
c

∂f in

∂t
+

µν

r2

∂

∂r
(r2f in) +

√
1 − µ2

ν cos φν

r sin θ

∂

∂θ
(sin θf in)

+

√
1 − µ2

ν sin φν

r sin θ

∂f in

∂φ
+

1
r

∂

∂µν

[(
1 − µ2

ν

)
f in]

−
√

1 − µ2
ν

r

cos θ

sin θ

∂

∂φν

(sin φνf
in) =

[
1
c

δf in

δt

]

collision
.

(5)

We adopt this equation as the basis for our numerical code. We
remark that the neutrino distribution function is a function of
time and six variables in phase space as written by

f in(r, θ,φ, t;µν,φν, ε
in). (6)

In the above expressions, the angle variables, µν and φν , are
those measured in the inertial frame.

3.2. Neutrino Reactions

We implement the rate of neutrino reactions with the compo-
sition of dense matter as contributions to the collision term. We
take here several simplifications to make the neutrino transfer
in 3D feasible.

As the first step of 3D calculations, we treat mainly the case
of static background of material or the case where the motion
is very slow so that v/c is very small. In the current study,
we evaluate the collision term of the Boltzmann equation to
the zeroth order of v/c by neglecting the terms due to the

Lorentz transformation. For dynamical situations in general, this
drastic approximation will be studied carefully by evaluating the
effects from the Lorentz transformation in the future. We plan
to implement such effects in all orders of v/c in our formulation
by taking into account the energy shift by the Doppler effects
and the angle shifts by the aberration in the collision term.

In addition, we limit ourselves within a set of neutrino
reactions to make the solution of the Boltzmann equation
possible in the current supercomputing facilities. In order to
avoid the energy coupling in the collision term, we do not
take into account energy-changing scatterings such as the
neutrino–electron scattering (Burrows et al. 2006a). This makes
the size of the block matrix due to the collision term smaller
and the whole matrix tractable in the system of equations. As
a further approach, we linearize the collision term for the pair
process to avoid the nonlinearity in equations and to guarantee
the convergence.

In the future, having enough supercomputing resources, we
will be able to include the energy-changing reactions by enlarg-
ing the size of block matrices. We may also be able to solve the
full reactions by the Newton iteration, which requires the com-
plicated matrix elements by derivatives, as have been accom-
plished in the spherical calculations (Sumiyoshi et al. 2005).

In the numerical study under the assumptions above, we
implement the collision term in the following way. We utilize
directly the neutrino distribution function in the inertial frame
to evaluate the collision term. We use the energy and angle
variables in the inertial frame in the calculation of the collision
term by dropping the shifts. We drop the superscript in for the
inertial frame in the following expressions. For the emission and
absorption of neutrinos, the collision term for the energy, ε, and
the angles, µν and φν , is expressed as

[
1
c

δf

δt

]

emis-abs
= −Rabs(ε, Ω)f (ε, Ω)

+ Remis(ε, Ω)[1 − f (ε, Ω)]. (7)

Hereafter we suppress the spatial variables and use Ω to denote
the two angle variables for the compactness of equations. The
emission rate is related to the absorption rate through the detailed
balance as

Remis(ε, Ω) = Rabs(ε, Ω)e−β(ε−µν ), (8)

where β = 1/kBT is the inverse of temperature and µν =
µp+µe−µn is the chemical potential for neutrinos. The collision
term for the scattering is expressed by

[
1
c

δf

δt

]

scat
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rscat(ε, Ω; ε′, Ω′)f (ε, Ω)

× [1 − f (ε′, Ω′)] +
∫

dε′ε′2

(2π )3

∫
dΩ′Rscat(ε′, Ω′; ε, Ω)

× f (ε′, Ω′)[1 − f (ε, Ω)], (9)

where Ω′ denotes the angle variables after/before the scattering.
The energy integration can be done by assuming the isoenergetic
scattering. The expression can be reduced as

[
1
c

δf

δt

]

scat
= − ε2

(2π )3

∫
dΩ′Rscat(Ω; Ω′)[f (ε, Ω)−f (ε, Ω′)],

(10)
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3次元流体ソルバーとの結合の際に、並列化、チューニング、改良など、 
オリジナルのコードから大幅な変更あり（定量的に異なるような変更も含む）。

Sumiyoshi(2014)のνe、νebar, νxの数密度やフラックスの分布図を比較。 
定性的に一致していることを確認。

2) 6次元ボルツマンソルバーの検証

Sumiyoshi2014Boltzmann-Hydro code



3) ボルツマンハイドロコードの効率改善
8%程度だった効率を10%程度に改善した。

STEP1 流体の方程式のニュートリノソース項以外の時間発展を解く

A) 圧力項と屈曲項の計算

STEP2 ボルツマン方程式の時間発展を解く

C) 移流項の計算

A) 衝突項の計算

B) 移流項の計算

STEP3 流体の方程式のニュートリノソース項による時間発展を解く

A) ニュートリノソース項の計算

B) 重力項を計算
Δt_hydroがΔt_boltzよりも 
非常に小さくなっていて 
STEP1の繰り返し回数が 
増大していた。 
タイムステップの評価を 
修正し、 
Δt_hydro=Δt_boltz＜min(Δx)/c 
とした。 

効率低

効率高



軸付近のグリッドが細かい領域で複数のφ方向メッシュに対し保存量を平均化する、粗視平
均化を行うルーチンを導入（流体のみ）

４) 軸付近の数値振動抑制とクーラン条件の緩和

φ

半径10km付近のニュートリノ加熱項の空間的変動が激しい領域 → 
　　　　　　　　　　　　　　　　　　軸付近のみVθやVφが局所的に異常に早く成長する

上記の問題の発生を抑制できることを確認。

θ1, θN     ：8点を平均化

どのパラメータであれば計算が変わらないか、 
dtをどれだけ伸ばせるかを確認することは今後
の課題

θ２,θN-1  ：４点を平均化
θ3, θN-2  ：２点を平均化

Nθ=48, Nφ=96のとき半径12km以下の領域で、
θ

クーラン条件の緩和も期待できる。



5) Furusawa-Togashi EOSコードへのアップデート

LS EOS (Lattimer & Swesty)

Shen EOS (Shen et al.)

FT EOS (Furusawa-Togashi)

ボルツマンハイドロコードに実装されているEOS
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中性子星の質量と半径

硬い

柔らかい 

一様な原子核物質に対し非相対論的なスキルム型を適用。 
多種の原子核を単一の原子核で近似。

一様な原子核物質に対し相対論的平均場理論を適用。 
多種の原子核を単一の原子核で近似。

FS EOS (Furusawa et al.)
一様な原子核物質に対し相対論的平均場理論を適用。 
多核種を考慮。

一様な原始核物質に対し多体理論により計算された現実
的な核力を適用。多核種を考慮。

重力波観測、半径の評価、最大質量の全ての制限を満たしている！

反応率を正確に 
計算できない



6) ボルツマンハイドロコードによる空間三次元計算の実行

2D（子午面） 3D （子午面）流体

Nr × Nθ × Nφ × Nνe × Nνθ × Nνφ = 256 × 48 × 96 × 16 × 6 × 6 
Nθを64から48に変更。計算時間短縮とNθ=Nφ/2とすることで球面調和
関数展開による解析でlとmの解像度を同等にするため



6) ボルツマンハイドロコードによる空間三次元計算の実行

2D（子午面） 3D （子午面）ニュートリノ

バウンス後10msまで計算し、prompt convectionの成長に伴うニュートリノ
密度やニュートリノフラックス分布の三次元的構造を捉えることができた。



6) ボルツマンハイドロコードによる空間三次元計算の実行

2D  
（赤道面） 
流体

３D  
（赤道面） 
流体

2D  
（赤道面） 
ニュートリノ

３D  
（赤道面） 
ニュートリノ

~ 160km



まとめ

1) ３次元流体ソルバーの検証
Iwakami(2014)で計算した結果と定性的に一致。Spiral モード振幅の増幅と減少を繰り返し、増幅する度
に回転方向が変化する複雑なパターンを再現。

2) ６次元ボルツマンソルバーの検証
Sumiyoshi(2014)で計算した結果と定性的に一致。νe、νebar, νxの数密度やフラックスを比較。論文の
図を再現し、定性的に一致していることを確認。

4) 半径10km付近の軸付近の数値振動抑制とクーラン条件の緩和
軸付近のグリッドが細かい領域で複数のφ方向メッシュに対し保存量を平均化する操作を行うルーチンを導入

3) ボルツマンハイドロコードの効率改善
8%程度だった効率を10%程度に改善した。

5) Furusawa-Togashi EOSコードへのアップグレード
Furusawa-Togashi EOSを利用できるボルツマンハイドロコードを三次元計算用に整備

6) ボルツマンハイドロコードによる空間三次元計算の実行
Nr × Nθ × Nφ × Nνe × Nνθ × Nνφ = 256 × 48 × 96 × 16 × 6 × 6 
バウンス後10msまで計算し、prompt convectionの成長に伴うニュートリノ密度やニュー
トリノフラックス分布の三次元的構造を捉えることができた。


