#### QCDの有限温度相転移とトポロジー

#### ーサブ課題A「QCD相転移」ー



#### 2018.10.3 重点課題9研究報告会

#### QCDの有限温度相転移とトポロジー

#### ー サ ブ 課題A「QCD 相転移」 ー



#### 2017.5.31 重点課題9研究報告会

#### QCD 有限温度相転移 contributor

- 青木慎也 京大基研
- 青木保道 KEK/理研
- 深谷英則
   大阪大学
- Guido Cossu
   Edinburgh
- 橋本省二 KEK
- 金児隆志 KEK
- ・鈴木渓 KEK

. . .

#### ここで紹介する結果は全て Preliminary です

- 何故興味があるか
  - 宇宙と物質の進化と関係

- ・ 純理論的な興味
  - ・ QCDの理解

・実験: RHIC, LHC

カイラル対称性とその自発的破れ

- ↑物理点直上の計算
  - 大規模数値計算の主流

- ↑ クォーク質量を変えてプローブ
  - ・非物理点(クォーク質量)の情報
    - ・物理点の理解の強固な補強
    - 究極的には相図の完成
- ・この課題で追求する!



- ・純理論的な興味
  - QCDの理解
    - カイラル対称性とその自発的破れ

- ↑ クォーク質量を変えてプローブ
  - ・非物理点(クォーク質量)の情報
    - ・物理点の理解の強固な補強
    - ・究極的には相図の完成
- ・この課題で追求する!

- ・最も近い理想的な状況: N<sub>f</sub>=2
  - 相転移とトポロジー
    - 密接に関係!
  - トポロジーを詳しく調べる
  - ・U(1)Aの回復?=長年の懸案
- 波及効果
  - axion → 宇宙と物質の進化
- ・まずはNf=2を理解し
- N<sub>f</sub>=2+1 へつなげる
  - Columbia plot の全容へ

- 純理論的な興味
  - ・ QCDの理解
    - カイラル対称性とその自発的破れ

- ↑ クォーク質量を変えてプローブ
  - ・非物理点(クォーク質量)の情報
    - ・物理点の理解の強固な補強
    - ・ 究極的には相図の完成
- ・この課題で追求する!

| ・最も近い理想的な状況: N <sub>f</sub> =2       |
|--------------------------------------|
| ・相転移とトポロジー                           |
| <ul> <li>密接に関係!</li> </ul>           |
| <ul> <li>トポロジーを詳しく調べる</li> </ul>     |
| ・U(1) <sub>A</sub> の回復?= 長年の懸案       |
| • 波及効果                               |
| <ul> <li>axion → 宇宙と物質の進化</li> </ul> |
| ・まずはNf=2を理解し                         |
| • N <sub>f</sub> =2+1 へつなげる          |
| • Columbia plot の全容へ                 |

## 現在でも: Columbia Plot = 大方の人の理解 || 期待



[original Columbia plot: Brown et al 1990]

# 現在でも: Columbia Plot = 大方の人の理解 || 期待



[original Columbia plot: Brown et al 1990]

#### N<sub>f</sub>=2+1相図

- ・ 連続極限で分かっていること
  - Nf=0: 一次転移
    - 右上隅はよく分かっている
  - N<sub>f</sub>=2+1 物理点: cross-over
    - staggered (Wuppertal 2006)
    - 他の正則化でも反証なし
    - ・厳密なカイラル対称性を持つ
       アプローチでは未踏
- その他の領域は不確定



#### QCD 有限温度相転移の理論: N<sub>f</sub>=2+1 Lattice



- ・相境界(μ=0)の μ>0 への伸び方を調べる→(T,μ)臨界終点の研究へつなげる
- 大変重要/有用である!

#### まずは N<sub>f</sub>=2

- N<sub>f</sub>=2+1 physical pt. から遠い?
  - $m_s \sim 100 \text{ MeV} \rightarrow \infty$ 
    - T=0 では s のあるなしは微細効果
  - boundary の情報としては有用
- N<sub>f</sub>=2
  - Wilson, staggered: 未確定
  - ・ 厳密な格子カイラル対称性
    - ➡U(1)<sub>A</sub>回復を示唆[JLQCD16]
    - →一次転移の可能性 → χ<sub>t</sub>(m)に飛び?
       [Pisarski&Wilczek]

![](_page_12_Figure_10.jpeg)

![](_page_13_Picture_0.jpeg)

- 0 ≤ m<sub>f</sub> < m<sub>c</sub> : 一次転移
- 一つの可能性として: N<sub>f</sub>=3の一次転移領域と繋がる
- 物理点への影響も考えられる

![](_page_13_Figure_4.jpeg)

# 格子作用と対称性

|             | U(1) <sub>B</sub> | SU(N <sub>f</sub> )∨ | SU(N <sub>f</sub> ) <sub>A</sub> | simulation<br>cost   |
|-------------|-------------------|----------------------|----------------------------------|----------------------|
| Wilson      | $\checkmark$      | $\checkmark$         | ×                                | moderate             |
| staggered   | $\checkmark$      | ×                    | U(1)                             | cheep                |
| domain wall | $\checkmark$      | $\checkmark$         | almost<br>exact                  | expensive            |
| overlap     | $\checkmark$      | $\checkmark$         | $\checkmark$                     | almost<br>impossible |

我々の手法

- · domain wall fermion (DW)  $\rightarrow$  "reweighting" to overlap (OV) [JLQCD]
- ・ 時間を節約しつつ、最終結果は厳密な対称性を保証
  - ・ ただし、有効統計の減少とDWの近似の精度には注意が必要

# 実際、我々の研究で トポロジカル感受率 χ<sub>t</sub>(m) に一次転移が見えてい るかもしれない。。。

| GL-DW | gluonic charge on DW    |
|-------|-------------------------|
| GL-OV | gluonic charge on OV    |
| OV-   | OV index on DW ensemble |
| OV-OV | OV index on OV ensemble |

#### $\chi_t(m_f)$ for N\_f=2 T=220 MeV

![](_page_16_Figure_2.jpeg)

| GL-DW | gluonic charge on DW    |
|-------|-------------------------|
| GL-OV | gluonic charge on OV    |
| OV-   | OV index on DW ensemble |
| OV-OV | OV index on OV ensemble |

#### $\chi_t(m_f)$ for N<sub>f</sub>=2 T=220 MeV

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_0.jpeg)

#### $\chi_t(m_f)~\text{for}~N_f{=}2~\text{T}{=}220~\text{MeV}$

![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_0.jpeg)

## $\chi_t(m_f)$ for N<sub>f</sub>=2 T=220 MeV

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_0.jpeg)

系統誤差?

• V=32<sup>3</sup>

#### ➡∞ 必要

- ・熱力学極限: m→の前に
- *a* = 0.07 fm
  - ➡0 必要
    - *a* = 0.11 fm と比較
      - · 誤差はa<sup>2</sup>
- T=220 MeV

![](_page_21_Picture_9.jpeg)

![](_page_21_Figure_10.jpeg)

### $\chi_t(m)$ T=~220 MeV discretization effect

![](_page_22_Figure_1.jpeg)

- OV-OV: better scaling
- GL-DW: large scaling violation for smaller m
- OV-OV:  $\chi_t = 0$  (within error) for  $0 \le m \le 10$  MeV
- **GL-DW**:  $\chi_t > 0$ , but, may well decrease as *a*

→ (consistent with OV-OV with large error of OV-OV)

#### $\chi_t(m)$ T=220 MeV $a^2$ scaling: m=6.6 MeV

![](_page_23_Figure_1.jpeg)

continuum scaling in 1st region

- m=6.6 MeV
- vanishing towards continuum limit
- caveat: physical volume is different  $\rightarrow$  needs further invest.

| GL-DW | gluonic charge on DW    |
|-------|-------------------------|
| GL-OV | gluonic charge on OV    |
| OV-DW | OV index on DW ensemble |
| OV-OV | OV index on OV ensemble |

# $\chi_t(m)$ T=~220 MeV, 32<sup>3</sup>x12

![](_page_24_Figure_2.jpeg)

#### suggesting 2 regions

1:  $\chi_t$  is very small (may vanish in *a*→0): 0 ≤ m ≈ 10 MeV

( $\rightarrow$  consistent w/ Aoki-Fukaya-Tanigchi for U(1)<sub>A</sub> symm.)

- 2: sudden growth of  $\chi_t$  : 10 MeV  $\leq$  m
- physical ud mass point: m≃4 MeV

| GL-DW | gluonic charge on DW    |
|-------|-------------------------|
| GL-OV | gluonic charge on OV    |
| OV-DW | OV index on DW ensemble |
| OV-OV | OV index on OV ensemble |

# $\chi_t(m)$ T=~220 MeV, 32<sup>3</sup>x12

![](_page_25_Figure_2.jpeg)

suggesting 2 regions

1:  $\chi_t$  is very small (may vanish in *a*→0): 0 ≤ m ≤ 10 MeV

( $\rightarrow$  consistent w/ Aoki-Fukaya-Tanigchi for U(1)<sub>A</sub> symm.)

- 2: sudden growth of  $\chi_t$  : 10 MeV  $\lesssim$  m
- physical ud mass point: m≈4 MeV

| GL-DW | gluonic charge on DW    |
|-------|-------------------------|
| GL-OV | gluonic charge on OV    |
| OV-DW | OV index on DW ensemble |
| OV-OV | OV index on OV ensemble |

#### $\chi_t(m)$ T=~220 MeV, 32<sup>3</sup>x12

![](_page_26_Figure_2.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_1.jpeg)

 Statistics in trajectory ~30k, 30k, 10k

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_1.jpeg)

- V dependence at m=10 MeV is strange
  - non-monotonic: cannot take thermodynamic limit
  - important region, where a phase boundary was suggested w/ 32<sup>3</sup>
- Let's look at the histogram of Q

summary of histogram: T=220 MeV, m=10 MeV

![](_page_31_Figure_1.jpeg)

 $\bigcirc \odot 24^3$  $\blacksquare 32^3$ 

♦ ♦ 48<sup>3</sup>

1.5×10

summary of histogram: T=220 MeV, m=10 MeV

![](_page_32_Figure_1.jpeg)

 $\bigcirc \odot 24^3$  $\blacksquare 32^3$ 

\$ \$ 48<sup>3</sup>

1.5×10

# checking U(1)<sub>A</sub> breaking/restoring scenarios for $\chi_t(m)$ @T=220 MeV

![](_page_33_Figure_1.jpeg)

- AFK scenario:  $\chi_t = 0$  for  $0 < m < m_c$
- KY scenario:  $\chi_t = 2 f_A m^2$
- There are no strong tensions
- Neither scenario is excluded

#### Kanazawa-Yamamoto

- assume  $f_A \neq 0$  (breaking param)
- expansing free energy in m
- discussing
  - finite m and V effect
  - in each topological sector

# U(1)<sub>A</sub>

#### まずは N<sub>f</sub>=2

- N<sub>f</sub>=2+1 physical pt. から遠い?
  - $m_s \sim 100 \text{ MeV} \rightarrow \infty$ 
    - T=0 では s のあるなしは微細効果
  - boundary の情報としては有用
- N<sub>f</sub>=2
  - Wilson, staggered: 未確定
  - ・ 厳密な格子カイラル対称性

→U(1)<sub>A</sub> 回復を示唆 [JLQCD16]
 →一次転移の可能性 → χ<sub>t</sub>(m)に飛び?
 [Pisarski&Wilczek]

![](_page_35_Figure_9.jpeg)

#### Why bother ?

#### • Because it is unsettled problem !

- fate of  $U(1)_A$  analytic
  - Gross-Pisarski-Yaffe (1981)
     restores in high temperature limit
    - Dilute instanton gas
  - Cohen (1996)
    - measure zero instanton effect  $\rightarrow$  restores
  - Lee-Hatsuda (1996)
    - zero mode does contributes → broken
  - Aoki-Fukaya-Tanigchi (2012)
    - QCD analysis (overlap) →
  - Kanazawa-Yamamoto (2015)
    - EFT case study
  - Azcoiti (2017)
    - case study

- → restores w/ assumption (lattice)
- how restore / break

how restore / break

#### Why bother ?

#### • Because it is unsettled problem !

- fate of  $U(1)_A$  lattice
  - HotQCD (DW, 2012)
  - JLQCD (topology fixed overlap, 2013)
  - TWQCD (optimal DW, 2013)
  - LLNL/RBC (DW, 2014)
  - HotQCD (DW, 2014)
  - Dick et al. (overlap on HISQ, 2015)
  - Brandt et al. (O(a) improved Wilson 2016)
  - JLQCD (reweighted overlap from DW, 2016) rest
  - JLQCD (current: see Suzuki et al Lattice 2017) restores
  - Ishikawa et al (Wilson, 2017)

broken restores restores? broken broken broken restores restores restores

at least Z<sub>4</sub> restores

JLQCD, preliminary (2018)

# U(1)<sub>A</sub>感受率(有限体積効果)

![](_page_38_Figure_2.jpeg)

⇒mが小さいとき、有限体積効果はなさそう

16/Sep/2018

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

#### ここまでのまとめ

- ・ カイラル対称性が厳密な計算手法でQCD相転移を追跡
  - 特に N<sub>f</sub>=2 QCD では他の手法は信頼に足りない
  - ・ 先行するJLQCD研究より連続理論に近い計算を推進
- ・ 高温相 T=220 MeV で χ<sub>t</sub>(m) 、特に 体積依存性を追求
  - ・ 一次転移と思われた mc 近傍で 体積依存性が不自然
    - 最大体積 48<sup>3</sup> で統計不足が疑われる
  - 相転移の有無: 結論出ず
  - T>T<sub>c</sub> @ phys. point でゼロの可能性: 結論出ず
- fate of U(1)<sub>A</sub>
  - T>T<sub>c</sub>で回復するか: 結論出ず
- 更なる研究が必要

#### 問題点と

## これから半年~1年で明らかにしたいこと

- ・ 統計1
  - ・トポロジカル感受率: Q=0 以外のセクターのサンプル
  - ・ U(1)<sub>A</sub> Dirac 演算子のゼロに近いモードのサンプル
  - ・ どちらも困難
    - ・ 特に 48<sup>3</sup>、物理ud質量より軽い点は無謀であったかも。。。
  - ・方針
    - m = 5 m<sub>ud</sub> 程度を中心に 40<sup>3</sup> を調べる
    - ・ T=190 (<220) MeV を開始する: 温度による抑制が緩いので見やすい はず
- ・ 統計2
  - reweighting による 有効統計の著しい減少
    - そもそも DWF → OV 対応が良い領域と思われていたがそうでもない
    - · 追跡必要
- ・手法
  - ・ OV の近似の影響

展望

- ・ N<sub>f</sub>=2の相転移の解明
- ・ N<sub>f</sub>=2+1 へ (ポスト京)
- ・ N<sub>f</sub>=3: all degenerate: R-CCS 場の理論チーム中心に検討開始

![](_page_43_Figure_4.jpeg)

# 他のグループの研究纏め

# Columbia plot: direct search of PT / scaling

![](_page_45_Figure_1.jpeg)

 $N_f=2+1$  or 3

- either
  - no PT found
  - 1st order region
    - shrinks as  $a \rightarrow 0$

with both staggered and Wilson

- or even disappear ?
- for more information see eg
  - Meyer Lattice 2015
  - Ding Lattice 2016
  - de Forcrand
     "Surprises in the Columbia plot" (Lapland talk 2018)

# Columbia plot: direct search of PT / scaling

![](_page_46_Figure_1.jpeg)

• 2nd order

- improved Wilson
  - WHOT-QCD Lat2016 (O(4) scaling)
  - Ejiri et al PRD 2016 [heavy many flavor]
- 1st oder

٠

- imaginary  $\mu \rightarrow 0$ 
  - staggered Bonati et al PRD 2014
  - Wilson Phillipsen et al PRD 2016

external parameter

- → phase boundary
- → point of interest
- detour the demanding region

#### Columbia plot: direct search of PT / scaling

![](_page_47_Figure_1.jpeg)

#### screening mass from O(a) improved Wilson f $N_f=2$

- mass difference between  $\pi$  and  $\delta$ 

![](_page_48_Figure_2.jpeg)

•  $N_t = 1/(aT) = 16$  - quite fine lattice

•  $T=T_c$ 

on top of transition temperature

only one existing study for  $N_f=2$ 

•  $\Delta M_{PS} = 0$  (with a sizable error)  $\rightarrow$  consistent with U(1)<sub>A</sub> restoration

#### screening mass from O(a) improved Wilson f $N_f=2$

- mass difference between  $\pi$  and  $\delta$ 

![](_page_49_Figure_2.jpeg)

•  $\Delta M_{PS} = 0$  (with a sizable error)  $\rightarrow$  consistent with U(1)<sub>A</sub> restoration

#### QCD 有限温度相転移の理論: N<sub>f</sub>=2+1 Lattice

- Columbia plot によらない解析
- mud, ms を固定し、温度だけを変える: 1 parameter (+ 連続極限): 楽
  - 物理点より重いクォークの計算から外挿
  - ・物理点直上の計算
- こちらが主流
- ・ 直上: クロスオーバー Aoki, Endrodi, Fodor, Katz, Szabo (2006)
  - スタッガードクォークで連続極限