格子QCDにおけるダイバリオン研究

権業 慎也(理研)

HAL(Hadrons to Atomic nuclei from Lattice) QCD Collaboration

K.Sasaki(YITP), S. Aoki (YITP), T. Doi (RIKEN), F. Etiminan (Birjand U.), T. Hatsuda (RIKEN), Y. Ikeda (YITP), T. Inoue (Nihon Univ.), T. Iritani (RIKEN), N. Ishii (RCNP) ,T. Miyamoto (YITP), K. Murano (RCNP), H. Nemura (RCNP)

PRL, accepted プレスリリース24日解禁

May 23, 2018@重点課題9研究報告会

ダイバリオン=二つのバリオン(6つのクォーク)の束縛状態

SU(3)の分類: バリオン(B=1)

10重項のなかで**Ωバリオン**のみが強い相互作用 の崩壊に対して**安定**に存在

SU(3)の分類:模型によるダイバリオン(B=2)の研究

ΩΩ in J=0での模型によるこれまでの研究

SU(3) chiral quark model Z.Y. Zhang et al(1997)

$$\Delta M_{\Omega\Omega} = -166 \mathrm{MeV}$$

$$\Delta M_{\Omega\Omega} \equiv E_{\Omega\Omega} - 2M_{\Omega}$$

Quark Disloc/Color-screen model F. Wang et al(1992)

$$\Delta M_{\Omega\Omega} = 43 \pm 18 \mathrm{MeV}$$

- 模型によって束縛・非束縛が全く異なる
- (そもそも)QCDからのアプローチではないので、
 現実世界からの乖離が激しい

QCDからの第一原理計算(格子QCD)

$$Z = \int dU dq d\bar{q} \exp\left[-\int d\tau d^3 x \mathcal{L}_{\rm E}\right]$$

- ゲージ不変にQCDを格子化する方法
- モンテカルロ計算によりQCDを数値的に解ける

格子QCDによるバリオン間相互作用の研究 ~HAL法~

Aoki, Hatsuda, Ishii, PTP123, 89 (2010)

南部・ベーテ・サルピーター波動関数

$$\Psi_n(\vec{r}) e^{-E_n t}$$

$$= \sum_{\vec{x}} \langle 0 | B_1(t, \vec{r} + \vec{x}) B_2(t, \vec{x}) | E_n \rangle$$

Ω baryonに対応する局所演算子B₁&B₂:

B

B₂

$$\Omega_{\alpha,k}(x) = \epsilon^{abc} \left[s_a^T(x) C \gamma_k s_b(x) \right] s_{c,\alpha}(x)$$

漸近領域 (r>>R)
へルムホルツ方程式が成り立つ:
 $\left(\nabla^2 + k^2 \right) \Psi(\vec{r}) = 0$
 $\Psi(\vec{r}) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$

格子QCDによるバリオン間相互作用の研究 ~HAL法~

Aoki, Hatsuda, Ishii, PTP123, 89 (2010)

南部・ベーテ・サルピーター波動関数

$$\Psi_n(\vec{r}) e^{-E_n t}$$

$$= \sum_{\vec{x}} \langle 0 | B_1(t, \vec{r} + \vec{x}) B_2(t, \vec{x}) | E_n \rangle$$

Ω baryonに対応する局所演算子B₁&B₂:

B

B₂

 $\Omega_{\alpha,k}(x) = \epsilon^{abc} \left[s_a^T(x) C \gamma_k s_b(x) \right] s_{c,\alpha}(x)$ 相互作用領域 シュレディンガー型方程式が成り立つ $\left(\vec{p}_n^2 + \nabla^2 \right) \Psi_n(\vec{r}) = 2\mu \int d\vec{r'} U(\vec{r}, \vec{r'}) \Psi_n(\vec{r'})$

Aoki, Hatsuda, Ishii, PTP123, 89 (2010)

非局所ポテンシャルU(r,r')の性質

$$\left(\vec{p}_n^2 + \nabla^2\right)\Psi_n\left(\vec{r}\right) = 2\mu \int d\vec{r'} U(\vec{r},\vec{r'})\Psi_n(\vec{r'})$$

- エネルギーに依存しない
- ・局所ポテンシャルは微分展開(Okugo-Marshak展開)
 のLO項:

$$U(\vec{r}, \vec{r'}) = V_c(r) + V_\sigma(r)(\vec{S}_1 \cdot \vec{S}_2) + S_{12}V_{T_1}(r) + O(\nabla^2) = V_C^{eff}(r) + O(\nabla^2)$$

- 微分展開の収束性は(時間依存性を見ることで)見積もれる
- 高次の項の決定は二つのソース関数を用いて可能

(Iritani et. al, arXiv:1805.02365)

Aoki, Hatsuda, Ishii, PTP123, 89 (2010)

従来の(時間に依存しない)HAL法 $(\vec{p}_n^2 + \nabla^2) \Psi_n(\vec{r}) = 2\mu \int d\vec{r'} U(\vec{r}, \vec{r'}) \Psi_n(\vec{r'})$ • 1つの状態のNBS波動関数=> ポテンシャルが求まる 格子で計算できる量:4点相関関数

 $\mathcal{G}(\vec{x}, \vec{y}, t - t_0; J^P) = \langle 0 | B_1(\vec{y}, t) B_2(\vec{x}, t) \overline{\mathcal{J}}(t_0; J^P) | 0 \rangle$

$$=\sum_{n=0}^{\infty}A_n\Psi_n(\vec{r})e^{-E_n(t-t_0)}$$

$$\to A_0 \Psi_0(\vec{r}) e^{-E_0(t-t_0)}$$

- 基底状態のNBS波動関数を4点相関関数から抽出
- =>格子の大きさが大きくなるにつれ基底状態の抽出は困難
- (直接法における偽のプラトー Iritani et al. JHEP(2016), PRD(2017)) =>時間依存HAL法ではこの問題を避けられる

 $E_n \sim 2\sqrt{m_B^2 + (2\pi n/L)^2} \sim E_0 \ (L \gg 1)$

N. Ishii et al, PLB712, 437 (2010)

時間依存HAL法

規格化した4点相関関数(R correlator): $m_{B_1} = m_{B_2}$ $\mathcal{R}(\vec{x}, \vec{y}, t - t_0; J^P) = e^{(m_{B_1} + m_{B_2})t} \langle 0 | B_1(\vec{y}, t) B_2(\vec{x}, t) \overline{\mathcal{J}}(t_0; J^P) | 0 \rangle$ 弾性散乱領域 $\swarrow \sum_n A_n \Psi_n(\vec{r}) e^{-\Delta E_n t}$ (基底状態の抽出は必要ない) $\Delta E_n = 2\sqrt{m_B^2 + k_n^2} - 2m_B$

$$\left(\frac{1}{4m_B}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{m_B}\right)\mathcal{R} = \int U(\vec{r}, \vec{r'})\mathcal{R}d^3r'$$

ポテンシャルが基底状態以外の散乱状態の寄与
 を含んだ状態でも抽出可能
 数値計算ノイズが減らせる

ΩΩ間相互作用はもっともノイズが抑えられる

ΩΩ(J=0)の相互作用

M. Yamada et. al.(HAL QCD), PTEP2015

ΩΩ in J=0でのHALによるこれまでの研究 Nf=2+1 full QCD with L = 3fm, m_π= 700MeV

m_Ω= 1970MeV

- 斥力芯と引力領域が存在
- 位相差がサンプリングによって束縛・非束縛を示す

=>ユニタリー極限近傍に存在

(ほぼ)物理点でのΩΩ間相互作用の研究

理論手法の発展

- 時間依存HAL法
- 十重項-十重項への拡張

計算アルゴリズムの開発

統一縮約法 (Doi-Endres, 2013)

'HOKUSAI

バリオン間に働く力の計算が実現

Numerical Setup

2+1 flavor gauge configurations

Iwasaki gauge action & O(a) improved Wilson quark

- a= 0.0846 [fm], a⁻¹ = 2333 [MeV]
- 96³x96 lattice, L = 8.1[fm]
- 400 confs x 48 source positions x 4 rotations

Wall source is employed. only S-wave state is produced.

	[MeV]	phys.
π	146	8%
K	525	6%
Ν	964	3%
Ω	1712	2%

SG and K. Sasaki et.al.(HAL), accepted in PRL

ΩΩ in J = 0

"most strange dibaryon"

Nf=2+1 full QCD with L = 8.1fm, m_{π} = 146MeV

SG and K. Sasaki et.al.(HAL), accepted in PRL

ΩΩ in J = 0

"厳密な"物理点でのConservative estimate

 $m_{\pi=}146 \text{ MeV} \rightarrow 135 \text{ MeV}, m_{\Omega}= 1712 \text{MeV} \rightarrow 1672 \text{ MeV}$

conservative estimate: シュレディンガー方程式の質量項のみ変える $(B_{\Omega\Omega}^{(\text{QCD})}, B_{\Omega\Omega}^{(\text{QCD+Coulomb})}) = (1.6(6) \text{MeV}, 0.7(5) \text{MeV})$ $\rightarrow (1.3(5) \text{MeV}, 0.5(5) \text{MeV})$ 変化は誤差の範囲内

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

5

ΩΩ Correlation@LHC

Response to system size change

 $C_{SI}(Q) = C_{R}(Q)/C_{R'}(Q)$

QS (HBT) Correlation suppresses the ratio

Nevertheless FSI dominates at low Q

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Kenji Morita (Wroclaw/Riken)

$\Omega\Omega$ Correlation: Statistics?

of pair A(Q)

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

まとめ

ΩΩ(¹S₀)間相互作用 accepted in PRL (ほぼ)物理点の計算(m_π≒146MeV) - 斥力芯と引力ポケットを示す - 浅い束縛状態あり[Most strange dibaryon] - 散乱長が大きくユニタリー極限近傍にあり ダイバリオン 京コンピュータでの予言 1930年代に発見 重陽子=p+n $\Omega\Omega = \Omega + \Omega$ S (d) 66 (d) d (u) u u) S

J-PARC&FAIRのHIC実験に期待

Back Slides

coupled channels including all higher partial waves

J	I	NN	NΔ	ΔΔ	
0	1	¹ S ₀	⁵ D ₀	¹ S ₀ ⁵ D ₀	27plet
	3	_	_	¹ S ₀ ⁵ D ₀	28plet
1	0	³ S ₁ ³ D ₁	_	³ S ₁ ³ D ₁ ⁵D1 ⁷ D ₁ ⁷ G ₁	10*plet
	2	-	³ S ₁ ³ D ₁ ⁵ D ₁	³ S ₁ ³ D ₁ ⁵D1 ⁷ D ₁ ⁷ G ₁	35plet
2	1	¹ D ₂ ³ D ₂	⁵ S ₂ ⁵ D ₂ ³ D ₂ ⁵ G ₂	⁵ S ₂ ⁵ D ₂ ⁵ G ₂ ³ D ₂ ¹ D ₂ ⁷ D ₂ ⁷ G ₂	27plet
	3	_	_	⁵ S ₂ ⁵ D ₂ ⁵ G ₂ ³ D ₂ ⁻¹ D ₂ ⁷ D ₂ ⁻⁷ G ₂	28plet
3	0	³ D ₃ ³ G ₃	_	⁷ S ₃ ⁷ D ₃ ⁷ G ₃ ⁷ I ₃ ⁵D₃ ⁵G ₃ ³ D ₃ ³ G ₃	10*plet
	2	_	⁵ D ₃ ⁵ G ₃ ³ D ₃ ³ G ₃	$^{7}S_{3} ^{7}D_{3} ^{7}G_{3} ^{7}I_{3} ^{5}D_{3} ^{5}G_{3} ^{3}D_{3} ^{3}G_{3}$	35plet

platux region in Omg-Omg at phys. point

To extract the B.E. using Luscher's method, t/a >1000 is needed Kenji Morita (Wroclaw/Riken)

8 Nov, 2017 8

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Kenji Morita (Wroclaw/Riken)

$\Omega\Omega$ Correlation : elements

Wave function

$$|\varphi_{\Omega\Omega}^{\text{spin-averaged}}(\boldsymbol{q}^*,\boldsymbol{r}^*)|^2 = \frac{1}{16}|\varphi(\boldsymbol{J}=\boldsymbol{0})|^2 + \frac{1}{16}|\varphi(\boldsymbol{J}=\boldsymbol{0})|^2 + \frac{1}{16}|\varphi(\boldsymbol{J}=\boldsymbol{0})|^2$$

+
$$\sum_{J=1}^{3} \frac{2J+1}{16} |\varphi(J)|^2$$

FSI+Coulomb+symmetrization

Source function $S(x, k) = \frac{d}{(2\pi)^3} m_T \cosh(y - \eta_s) n_f(u \cdot k, T)$

$$\times \exp\left(-\frac{x^2 + y^2}{2R^2}\right) \delta(\tau - \tau_0)$$
$$y_T = \alpha r/R$$

Boost-invariant, azimuthal symmetric transverse flow

Fit to p_T spectrum with T=164 MeV

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

