

東京大学理学系研究科 宮城 宇志

素粒子・原子核・宇宙「京からポスト京に向けて」 シンポジウム@筑波大学東京キャンパス 1

Contents

◆ ユニタリ模型演算子法 (UMOA)

◆ 有限核への応用

◆ まとめと今後の展望

- ◆ 近年の研究から、原子核の新たな性質が明らかになりつつある
 - ★ 低密度で空間的に広がった原子核(ハロー原子核)
 - ★ 魔法数の消失と出現
 - ★ 量子相転移

導入

◆ 核力に基づいて原子核構造を理解することは基本的な問題の1つ

➡ 2つの主な問題点

★核力

- ➡ 現象論的な取り扱いが主流(AV18, chiral EFT, …)
- → QCDから直接得るのは進行中(重点課題9サブ課題B 格子QCD, …)

★量子多体問題

→ 短距離での強い相関により数値計算が困難

VlowkやSRGなどによるさらなる繰り込みが必要

➡ 厳密に解けるのは通常20体系くらいまで

導入

◆ 核力

★ LQCDにより得られつつあるが、NNセクターではまだ十分ではない ★ chiral EFT, AV18などの現象論的な相互作用 D. Entem and R. Machleidt PRC 2003

★ similarity renormalization group (SRG) 変換により斥力芯を処理する

◆ 量子多体問題(ab initio計算手法)

★ ab initio計算手法の定義

* 系を構成するすべての核子の自由度を陽に扱う

* 用いる近似は制御可能であり、結果の系統的な改善が可能である

導入

◆ 量子多体問題(ab initio計算手法)

★ ab initio計算手法

- * 少数系解法(Faddeev方程式, Faddeev-Yakovsky方程式など)
- * Green's Function Monte Carlo
- * No-Core Shell Model
- * No-Core Monte Carlo Shell Model
- * Nuclear Lattice Effective Field Theory
- * Coupled-Cluster Method
- * Self-Consistent Green's Function Method
- * In-Medium Similarity Renormalization Group Approach
- * Unitary-Model-Operator Approach (UMOA)
- * …
- ◆ 今回UMOAを使って閉殻な原子核に対して2体力を用いた系統的な計算を試み る

7

核子数20くらいまで

閉殻近傍

ユニタリ模型演算子法(UMOA)

TM, T. Abe, R. Okamoto, T. Otsuka PTEP 2015.

UMOAでのUの選び方 $U = e^{S^{(1)}} e^{S^{(2)}} \cdots e^{S^{(A)}}$ S⁽ⁿ⁾は反エルミートn体演算子 Okubo-Lee-Suzukiの手法に よって求める

ユニタリ模型演算子法(UMOA)

TM, T. Abe, R. Okamoto, T. Otsuka PTEP 2015.

◆ 観測量

 $\mathcal{O} = \langle \Phi | U^{\dagger} \mathcal{O} U | \Phi \rangle$

有限核への応用

◆ 数値計算について

★核力

IT-NCSM: R. Roth et al., PRL 2011. IM-SRG: H. Herbert et al., Phys. Rept. 2016.₁₁

1.65

R_{ch}(fm)

1.62

有限核への応用

◆ 酸素同位体の基底状態エネルギー@ emax = 12, hw = 20 MeV

◆ 実験値の再現には少なくとも3体力の効果が必要

有限核への応用

◆ 核子あたりの束縛エネルギー @ emax = 12 and hw = 20 MeV

◆ 実線、点線: $B/A = a_V + a_S A^{-1/3} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2}$ ◆ 実験値と異なり、核子数が増えるにつれて大きくなっていく

有限核への応用

◆ 荷電半径 @ e_{max} = 12 and hw = 20 MeV

◆ 実線,点線:経験的な公式 $R_{\rm ch} = r_0 A^x$

◆ 核子数が増えるにつれ、実験値より小さくなっていく

◆ クォーク質量が最も軽い場合で束縛状態が存在

⁴ He	BHF	SV	SCGF	UMOA
Egs(MeV)	-8.1	-5.09	-4.80	-2.87

BHF: T. Inoue et al., PRC (2015).

SV: H. Nemura, Int. Jour. Mod. Phys. E (2014).

15 SCGF: C. McIlroy et al., arXiv:1701.0260

まとめと今後の展望

- ◆ ユニタリ模型演算子法(UMOA)を用いて、中重核の基底状態に関して数値 計算を行った
 - ★ UMOAは他の第一原理的な計算手法と同様に適用可能
 - ★ 実験値と比較すると、核子数の増加とともに
 - → 束縛エネルギーが増大する
 - → 半径が小さくなる

3体力の効果が必要

- ★ HAL QCD potentialを用いたテスト計算を⁴Heについて行った
 - → Mps = 469 MeVの場合において束縛状態が存在
- ◆ 今後の課題
 - ★ 3体力(現在進行中)

ユニタリ模型演算子法(UMOA)

UMOA - correlation operator

()

 $\widetilde{H} = e^{-S} H e^{S}$

H

- ◆ 相関演算子Sを求めるための手順
 - * 固有値問題を解く $(P+Q)H(P+Q)|\psi_k\rangle = \epsilon_k |\psi_k\rangle$
 - * P,Qは射影演算子
- * 固有ベクトルをP成分とQ成分に分割 $|\phi_k\rangle = P|\psi_k\rangle, \quad \omega |\phi_k\rangle = Q|\psi_k\rangle$ * マッピング演算子ωは形式的に $\omega = \sum_{k=1}^d Q|\psi_k\rangle\langle \tilde{\phi}_k|P$ $S = \operatorname{arctanh}(\omega - \omega^{\dagger})$ $\widetilde{H} = e^{-S}He^S$ + 変換後のハミルトニアンの性質 $Q\widetilde{H}P = P\widetilde{H}Q = 0$

UMOA - particle-hole classification

◆ 実際の応用では

UMOA - observables

◆ ハミルトニアン

★ 1p1h励起しない
★ 2p2h励起しない

UMOAによる変換

◆ 基底状態エネルギー

 $E_{\text{g.s.}} = \langle \Phi | \widetilde{H} | \Phi \rangle$ 2体の範囲で取り扱う

◆ その他の観測量

 $\mathcal{O} = \langle \Phi | U^{\dagger} \mathcal{O} U | \Phi \rangle$

UMOA - cluster expansion

◆ 変換後のハミルトニアンは多体演算子 $\widetilde{H} = \widetilde{H}^{(1)} + \widetilde{H}^{(2)} + \widetilde{H}^{(3)} + \cdots$ $\widetilde{H}^{(1)} = \sum_{\alpha\beta} \langle \alpha | \widetilde{h}_1 | \beta \rangle c_{\alpha}^{\dagger} c_{\beta}, \quad \widetilde{h}_1 = \widetilde{t}_1 + \widetilde{w}_1 = e^{-s_1} (t_1 + w_1) e^{s_1}$ $\widetilde{H}^{(2)} = \left(\frac{1}{2!}\right)^2 \sum_{\alpha,\beta} \langle \alpha\beta | \widetilde{v}_{12} | \gamma\delta \rangle c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\delta} c_{\gamma} - \sum_{\alpha,\beta} \langle \alpha | \widetilde{w}_1 | \beta \rangle c^{\dagger}_{\alpha} c_{\beta}$ $\widetilde{H}^{(3)} = \left(\frac{1}{3!}\right)^2 \sum_{\alpha\beta\gamma\lambda\mu\nu} \langle \alpha\beta\gamma|\widetilde{v}_{123}|\lambda\mu\nu\rangle c^{\dagger}_{\alpha}c^{\dagger}_{\beta}c^{\dagger}_{\gamma}c_{\nu}c_{\mu}c_{\lambda} - \left(\frac{1}{2!}\right)^2 \sum_{\alpha\beta\gamma\lambda\mu\nu} \langle \alpha\beta|\widetilde{w}_{12}|\gamma\delta\rangle c^{\dagger}_{\alpha}c^{\dagger}_{\beta}c_{\delta}c_{\gamma}$ $\widetilde{v}_{12} = e^{-s_{12}}e^{-(s_1+s_2)}(h_1+h_2+v_{12})e^{s_1+s_2}e^{s_{12}} - (\widetilde{h}_1+\widetilde{h}_2)$ $-(\widetilde{h}_1+\widetilde{h}_2+\widetilde{h}_3+\widetilde{v}_{12}+\widetilde{v}_{23}+\widetilde{v}_{31})$ $\langle \alpha | \widetilde{w}_1 | \beta \rangle = \sum \langle \alpha \lambda | \widetilde{v}_{12} | \beta \lambda \rangle$ $\widetilde{w}_{12} = e^{-s_{12}}(w_1 + w_2)e^{s_{12}} - (w_1 + w_2)$

HAL QCD potentialを用いたUMOAによる⁴He計算

◆ クォーク質量が最も軽いケースにおいて束縛状態が存在

BHF: T. Inoue et al., PRC 91 (2015). SV: H. Nomura, Int. Jour. Mod. Phys. 23 (2014). SCGF: C. McIlroy et al., arXiv:1701.0260

⁴ He	BHF	SV	SCGF	UMOA
Egs(MeV)	-8.1	-5.09	-4.80	-2.87