QCDの有限温度相転移とトポロジー

ー サ ブ 課題A「QCD 相転移」 ー

2017.2.17 素粒子・原子核・宇宙「京からポスト京に向けて」シンポジウム

QCD 有限温度相転移

- 何故興味があるか
 - 宇宙と物質の進化と関係
 - 実験: RHIC, LHC
- ・ 純理論的な興味
 - QCDの理解
 - カイラル対称性とその自発的破れ
 - ・非物理点(クォーク質量)の情報
 - 物理点の理解の強固な補強

QCD 有限温度相転移の理論

- pure SU(3) ゲージ理論 (quark 無し)
 - ~3次元 Z(3)スピン系 → 一次転移を予想
 - ・Lattice: 一次転移が確立: Fukugita, Okawa, Ukawa; QCDPAX (Iwasaki et al)
- ・フェルミオンの効果は?
 - m_u , $m_d < m_s < \Lambda_{QCD} < m_c < m_b < m_t$
 - c, b, t は(定性的には)無視できる → N_f=2+1: m_u=m_d < m_s
 - Pisarski & Wilczek: 対称性に基づく議論
 - Lattice: "Columbia Plot"

• Columbia Plot: Brown et al (1990)

現在でも: Columbia Plot = 大方の人の理解 || 期待

N_f=2+1相図

- ・ 連続極限で分かっていること
 - Nf=0: 一次転移
 - 右上隅はよく分かっている
 - N_f=2+1 物理点: cross-over
 - staggered (Wuppertal 2006)
 - 他の正則化でも反証なし
 - ・厳密なカイラル対称性を持つ
 アプローチでは未踏
- その他の領域は不確定

QCD 有限温度相転移の理論: N_f=2+1 Lattice

- Nf=2+1 相図が完成すれば
 - ・ QCD の理解
 - ・物理点の相転移の存在、次数が分かる。
 - ・遠回りだが確実な方法
 - ・相境界(µ=0)の µ>0 への伸び方を調べる→(T,µ)臨界終点の研究へつなげる
- •大変重要/有用である!

・のだが、、、

N_f=2 相転移の進展

以下2ページ少々古いですが(2006) Y.Aokiさん(Wuppertal) のスライドを借ります

$m_s - m_{ud}$ phase diagram

Non-lattice approach

- chiral symmetry: (Pisarski & Wilczek)
 - $m_s \rightarrow \infty$, $m_{ud} = 0$: $N_f = 2$: 2nd order with O(4)
 - $m_s = m_{ud} \rightarrow 0: N_f = 3:$ 1st order

▶ *m* = 0+: 1st order

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロト < 団 > < 団 > < 豆 > < 豆 > 三 三

$m_s - m_{ud}$ phase diagram

Lattice approach

• $m_s \rightarrow \infty$, $m_{ud} = 0$: $N_f = 2$:

- Wilson fermion confirmed O(4) scaling (CPPACS)
 Staggered: no O(4), O(2) scaling
- Staggerèd: no O(4), O(2) scaling observed.

1st order ? (Pisa)

 possible ∆τ artifact (Philipsen Lattice2005)

-

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

N_f=2が大変だ!

- chiral symmetry: (Pisarski & Wilczek)
 - $m_s \rightarrow \infty$, $m_{ud} = 0$: $N_f = 2$: 2nd order with O(4)
 - •二次転移?
- ・実は他の可能性がある
 - SU(2)_LxSU(2)_R 回復に伴い、
 U(1)_Aも回復?
 - 一次転移の可能性

[S.Aoki, Fukaya, Taniguchi (2012)]

U(1)_Aの役割

- ・QCDの大局的対称性: U(N_f)_L x U(N_f)_R @ m_f→0
- ・ゼロ温度 T=0: → SU(N_f)_V x U(1)_V
 - SU(N_f)_Aはカイラル対称性の自発的破れ、U(1)_Aは量子異常で破れている
 - ・ Nf²-1 個のNGボゾン: π、フレーバー一重項: η' との明らかな分離
- フェルミオンゼロモードを通した関係: ρ(λ): 固有値λの密度
 - SU(N_f)_A 秩序パラメタ U(1)_A 秩序パラメタ $-\langle \overline{q}q \rangle = \pi \rho(0) \neq 0 \longrightarrow \Delta_{\pi-\delta} \sim \rho'(0) \neq 0$

U(1)_Aの役割

- ・ QCDの大局的対称性: U(N_f)_L x U(N_f)_R @ m_f→0
- ・高温 T>T_c: → SU(N_f)_V x U(1)_V x SU(N_f)_A x U(1)_A
 - SU(N_f)_Aは回復、U(1)_Aは?
 - それぞれ秩序パラメタにから確認できるはず
- フェルミオンゼロモードを通した関係: ρ(λ): 固有値λの密度
 - SU(N_f)_A 秩序パラメタ U(1)_A 秩序パラメタ - $\langle \overline{q}q \rangle = \pi \rho(0) = 0 \longrightarrow \Delta_{\pi-\delta} \sim \rho'(0) = 0?$

N_f=2のモダンな解析

- DWFアンサンブル→オーバーラップに再重み付け(reweighting)
 - ・DWF(ドメイン・ウォールフェルミオン): "ほぼ厳密な"カイラル対称性: m_{res}≪Λ_{QCD}
 - ・メビウスDWFにより改良
 - ・オーバーラップ: 厳密なカイラル対称性

[JLQCD: Tomiya, S.Aoki, Cossu, Fukaya, Hashimoto, Kaneko, Noaki(2016)]

N_f=2のモダンな解析

・rewight 無しのオーバラップ ρ(λ) λ~0 は病的に振る舞う:

[JLQCD: Tomiya, S.Aoki, Cossu, Fukaya, Hashimoto, Kaneko, Noaki(2016)]

N_f=2 (m→0) の新奇な性質

- chiral symmetry: (Pisarski & Wilczek)
 - $m_s \rightarrow \infty$, $m_{ud} = 0$: $N_f = 2$: 2nd order with O(4)
 - •二次転移?
- ・実は他の可能性がある
 - ・SU(2)_LxSU(2)_R 回復に伴い、 **U(1)_Aの回復が示唆された!** [JLQCD: Tomiya et.al (2016)]
 - 一次転移の可能性
 [S.Aoki, Fukaya, Taniguchi (2012)]

- 0 ≤ m_f < m_c:一次転移
- 一つの可能性として: N_f=3の一次転移領域と繋がる
- 物理点への影響が考えられる

U(1)_Aの役割とトポロジー

- ・QCDの大局的対称性: U(N_f)_L x U(N_f)_R @ m_f→0
- ・高温
 T>T_c: → SU(N_f)_V × U(1)_V × SU(N_f)_A × U(1)_A
 - ・SU(N_f)_Aは回復、U(1)_Aは?
 - それぞれ秩序パラメタにから確認できるはず
- フェルミオンゼロモードを通した関係: ρ(λ): 固有値λの密度

トポロジーにシグナルが現れるはず

・トポロジカル感受率: χ_t = <Q_t²> / V

For the discrete zero-modes, we have obtained

$$\lim_{V \to \infty} \frac{1}{V^k} \langle (N^A_{R+L})^k \rangle_m = 0, \quad \lim_{V \to \infty} \frac{1}{V^k} \langle Q(A)^{2k} \rangle_m = 0, \quad (98)$$

for an arbitrary positive integer k at a small but nonzero m. These zero-modes give no contribution to the correlation functions we are considering. [S.Aoki, Fukaya, Taniguchi (2012)]

N_f=2 ゲージ場のトポロジーに着目した解析

- DWFアンサンブル→オーバーラップに再重み付け(reweighting)
 - ・ Möbius DWF: ほぼ厳密なカイラル対称性: mres≪ΛQCD
 - ・オーバーラップ: 厳密なカイラル対称性
 - ・感受率を測る: χ_t = <Q_t²> / V:トポロジカル電荷(期待値=0)の分散
 - Q_tの測定として
 - 電荷密度(クローバー)の積分 (Wilson Flow 後)
 - Overlap Index: ディラック演算子の固有値

[JLQCD: YA、コス、深谷、橋本 et al]

ポスト京への橋渡し研究として実行中

N_f=2トポロジカル電荷の例

$\chi_t(T, m)$ for N_f=2 T=220 MeV ; (1/a=2.6 GeV)

1/a↑ で DW → Overlap 対応が改善されるので このパラメタに注力している

$\chi_t(T,m)$ for $N_f{=}2~$ T=220 MeV ; 1/a=2.6 GeV

- ・一次転移の存在を示唆
- ・ゼロ付近は本当にゼロか?
- ・m。はいくらか?

χ_t(T, m)の問題と方針

- 特にサンプルするのが困難な量
 - $Q_t \neq 0$ セクターのサンプルが困難。しかし正しい χ_t のために必要。
 - reweighting によってさらに有効サンプル数の減少
 - →「厚切りハム法」の併用でクロスチェック
- ・ $\chi_t \simeq 0$ は本当に ゼロか?: smoking gun と言っても良いので重要
 - ・統計増、厚切りハム法によるチェック、体積効果?
- m_c
 - ・ 転移領域を密に調べる:新アンサンブル、m_f-reweighting
 - ・ゼロ温度 simulation より、physical scale を決める: m_c>m_{ud}?
- ・他の物理量も確認: バルクな量

厚切りハム法

- Slab method
 - ・大局的トポロジー(サンプル困難)を
 - ・局所的電荷密度(サンプル容易)から推定

[Bitenholz, Forcrand, Gerber (2015)]

・テスト良好

χ_t(T, m)の問題と方針。さらに。

- ・ β=4.30 (1/a=2.6 GeV); L_s=32 で別の温度も調べる: T=1/(a N_t)
 - ・格子間隔 a(β), 空間体積を固定するので、物理効果を見やすい

- ここではNt=12を紹介した。Nt=8 は進行中。T=260 MeV付近も見たし。
- 必要に応じて体積効果

• L_s=32→24?

さらにその先のプラン

- 物理
 - QCD有限温度相転移
 - N_f=2
 - 高温でのトポロジカル感受率の振る舞いを解明する
 - T < T_c まで攻める [一次転移ダメ押し]
 - ・超高温(アクシオン)は攻めない
 - ・ N_f=2+1 へ
 - $m_s = \infty \rightarrow m_s < \infty \rightarrow m_s^{phys}$

さらにその先のプラン(つづき)

- 計算機:
 - ・Blue Gene Q: 2017.9 まで
 - KNL:
 - · 京都: 2016.10-
 - Oakforest-PACS
 - 2017.1-
- コード
 - Irolro++: BGQに特化, KNL では遅い
 - ・Grid: KNL 最適化進行中: P.Boyle, G.Cossu (Edinburgh) らに協力

まとめ

- N_f=2+1 QCD有限温度相転移の相図の解明のために
- N_f=2 を調べている
 - ・U(1)A対称性の回復により、mf=0 近傍で一次転移の可能性
 - トポロジカル感受率の研究を開始
 - 一次転移領域の存在に矛盾しない振る舞いが見られる(preliminary)
 - 今後系統的な研究に進む
 - ・高コスト定式化、高統計が必須な現象で、HPCに最適
- N_f=2+1 さらにはその先も大変重要で興味深い
- ポスト京の課題としても、期待が持てる