シミュレーションデータベースと統計学 吉田直紀, 西道啓博, 大木平 (KAVLI IPMU)

- Cosmology with Subaru HSC survey
- A large number of cosmological N-body simulations
- Parameter space exploration and the Gaussian process

Observational data and forward modeling

銀河周りの物質分布プロファイル (SDSSの観測データ) 9 (1095 halos) $\chi^2 / dof = 75.03/77$ Average DM distribution around massive clusters $a = 0.56^{+0.04}_{-0.05}$ 10² 10² $\Delta \Sigma(\mathbf{R}) \; [hM_{\odot}/\text{comoving pc}^2 \;]$ $\Delta \Sigma(\mathbf{R}) \left[h M_{\odot} / \text{comoving pc}^2 \right]$ $b = 1.48^{+0.09}_{-0.09}$ $\sigma_{logM} = 0.31^{+0.06}_{-0.07}$ 10¹ 10¹ 10⁰ 10⁰ 10^{-1} 10^{0} 10^{1} 10^{-1} 10^{0} 10¹ $R [h^{-1} comoving Mpc]$ $R [h^{-1} comoving Mpc]$ $40.0 <\!\!\lambda <\!\!55.0,\, 0.1 <\!\!z <\!\!0.33,\, P_{\rm cen}\!>\!\!0.9$ (609 halos) $55.0 < \lambda < 140.0, 0.1 < z < 0.33, P_{cen} > 0.9 (382 halos)$ 10² 10² $\Delta \Sigma(\mathbf{R}) \left[h M_{\odot} / \text{comoving pc}^2 \right]$ $\Delta \Sigma(\mathbf{R}) \ [hM_{\odot}/\text{comoving pc}^2 \]$ 10¹ 10^{1} line=N-body emulator 10⁰ 10⁰ data = SDSS measurements 10^{-1} 10^{0} 10^{1} 10^{-1} 10⁰ 10¹ $R [h^{-1} comoving Mpc]$ $R [h^{-1} comoving Mpc]$

COSMOLOGICAL PARAMETER DEPENDENCE

COSMOLOGICAL PARAMETER DEPENDENCE

COSMOLOGICAL PARAMETER DEPENDENCE

HSC GALAXY-GALAXY LENSING

- Known lens objects
 - host halo properties well known
 - photo-z accuracy not important
 - can measure Σ as a function of scale R instead of angle on the sky

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

- Each sample is the only one in each axisaligned hyperplane containing it
 - One can find many realizations of such design (ex. diagonal design)
 - Impose additional condition such as "the sum of the distances to the nearest design point is maximal" (maximin distance)

cosmological parameter 1

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

Simulation spec

- ✓ N of particles: 2048³
- ✓ Size: 5 billion lightyears
- ✓ 21 outputs per model
- ✓ 5 Tbyte data per model

84 sims are already available

parameter space sweep

- "sliced" LH design (Ba, Brenneman & Myers '15)
- generate >100 sample eventually
- maxi-min distance LH design for each 20 model set (e.g., red/blue points)

- two suites of runs
 - keep the initial random number seed (20 done)
 - different seeds (40)
 - red: emulator
 - blue: validation

SUPERCOMPUTING AND BIG DATA

10240 parallel earths

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

fiducial model

- PLANCK15 (flat ACDM)
- 24 realizations done
- assess statistical error
- emulator accuracy check

119 sims are already available parameter space sweep

- "sliced" LH design (Ba, Brenneman & Myers '15)
- generate >200 sample eventually
- maxi-min distance LH design for each 20 model set (e.g., red/blue points)

- two suites of runs
 - keep the initial random number seed (20 done)
 - different seeds (40)
 - red: emulator
 - blue: validation

SIMULATION SPEC

- ✓ N of particles: 2048³
- ✓ box size: 1h⁻¹Gpc
 - resolve a 10^{12} h⁻¹M_{solar} halo with ~100 particles
- ✓ 2nd-order Lagrangian PT initial condition @ z_{in}=59

(vary slightly for different cosmologies to keep the RMS displacement about 25% of the inter-particle separation)

✓ Tree-PM force by L-Gadget2 (w/ 4096³ PM mesh)

✓ 21 outputs in $0 \le z \le 1.5$

(equispaced in linear growth factor)

- ✓ Data compression (256GB -> 48GB par snapshot)
 - ✓ positions -> displacement (16 bits par dimension; accuracy ~1h⁻¹kpc)
 - velocity: discard after halo identification
 - ID: rearrange the order of particles by ID and then discard
 - ✓ already consuming ~200TB in half a year (~observational data)

SIMULATIONS

GAUSSIAN PROCESS

- A machine-learning technique to do inference in function space
 - non-parametic Bayesian inference
 - nonlinear regression analysis
- Basic quantities f(x) ~ P [μ (x), k(x, x')]
 - mean function (cf. mean)
 - covariance function (cf. variance)
- covariance function is characterized by a simple function with several hyper parameters

ex.
$$C(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \theta_1 \exp\left[-\frac{1}{2} \sum_{i=1}^{I} \frac{(x_i - x'_i)^2}{r_i^2}\right] + \theta_2.$$
"length scale" r: for each x:

- ✓ infer hyper parameters θ from training data (x_i, t_i)
 - Given a point x_{N+1}, infer t_{N+1} from θ and (x_i, t_i)

$$P(t_{N+1} | \mathbf{t}_N) \propto \exp\left[-\frac{1}{2} \left[\mathbf{t}_N \ t_{N+1}\right] \mathbf{C}_{N+1}^{-1} \begin{bmatrix} \mathbf{t}_N \\ t_{N+1} \end{bmatrix}\right]$$
$$\hat{t}_{N+1} = \mathbf{k}^T \mathbf{C}_{N+1}^{-1} \mathbf{t}_N$$

answer:

$$\hat{t}_{N+1} = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}_N \sigma_{\hat{t}_{N+1}}^2 = \kappa - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k}$$

GAUSSIAN PROCESS

- A machine-learning technique to do inference in function space
 - non-parametic Bayesian inference
 - nonlinear regression analysis
- Basic quantities f(x) ~ P [μ (x), k(x, x')]
 - mean function (cf. mean)
 - covariance function (cf. variance)
- covariance function is characterized by a simple function with several hyper parameters

ex.
$$C(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \theta_1 \exp\left[-\frac{1}{2} \sum_{i=1}^{I} \frac{(x_i - x'_i)^2}{r_i^2}\right] + \theta_2.$$
"length scale" r: for each x:

 infer hyper parameters θ from training data (x_i, t_i)

Given a point x_{N+1}, infer t_{N+1} from θ and (x_i, t_i)

$$P(t_{N+1} | \mathbf{t}_N) \propto \exp\left[-\frac{1}{2} \begin{bmatrix} \mathbf{t}_N \ t_{N+1} \end{bmatrix} \mathbf{C}_{N+1}^{-1} \begin{bmatrix} \mathbf{t}_N \\ t_{N+1} \end{bmatrix}\right]$$

answer:

$$\hat{t}_{N+1} = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}_N$$

$$\sigma_{\hat{t}_{N+1}}^2 = \kappa - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k}.$$

OUR $\Delta \Sigma$ EMULATOR DEMONSTRATIONS

GAUSSIAN PROCESS ACCURACY

training with 20 models (red) **validation** with 20 other models (blue)

HMF EMULATOR PERFORMANCE

HMF EMULATOR PERFORMANCE

HMF EMULATOR PERFORMANCE

PLANCK 2015

cparam = np.array([[0.02225,0.1198,0.6844,3.094,0.9645,-1]]) set_cosmo(cparam) give your cosmological params ~5s set_redshift(z) and redshifts ~600ms; HMF GP called inside lognh = mh_to_logdens(Mmin) convert M_min to n_h ~50µs plt.loglog(Rplot,get_dsigma(ascale, lognh, Rplot),lw=2,color='red')

Evaluate !! ~1ms

SUMMARY + FUTURE

- Modeling the halo mass function and galaxygalaxy lensing signal
 - Latin hypercube design + fitting/GP/spline
 - handy emulator in python ready
 - accuracy test undergoing, aimed at 5% accuracy
- To come
 - ▶ scikit-learn → george
 - RSD emulator to combine g-g lensing and 3D clustering (needs bigger volume)
 - further extension under discussion
 - e.g., non-flat, w0-wa cosmologies

other dependence (time, scale, mass, ...)

(6++)-D cosmological parameter space

Don't forget, however, the effect of baryons

Need for accurate templates

Parameter bias with respect to naive estimate from dark matter only simulations

Osato, Shirasaki, NY, 2015