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シミュレーションデータベースと統計学 
吉田直紀, 西道啓博, 大木平 

 (KAVLI IPMU) 

▸ Cosmology with Subaru HSC survey 

▸ A large number of cosmological N-body simulations 

▸ Parameter space exploration and the Gaussian process



Observa(onal	data	and	forward	modeling
銀河周りの物質分布プロファイル (SDSSの観測データ）



G-G LENSING SIMULATIONS

COSMOLOGICAL PARAMETER DEPENDENCE

バリオン密度
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G-G LENSING SIMULATIONS

COSMOLOGICAL PARAMETER DEPENDENCE

ダークエネルギー密度



G-G LENSING SIMULATIONS

HSC GALAXY-GALAXY LENSING
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‣ Known lens objects 
‣ host halo properties well known 
‣ photo-z accuracy not important 
‣ can measure Σ as a function of scale R 

instead of angle on the sky



ωb = Ωbh2: ±5%
ωc = Ωch2: ±10%
ΩΛ: ±20%
ln(1010 As): ±20%
ns: ±5%
w: ±20%



G-G LENSING SIMULATIONS

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

‣ Each sample is the only one in each axis-
aligned hyperplane containing it 
‣ One can find many realizations of such 

design (ex. diagonal design)
‣ Impose additional condition such as “the sum 

of the distances to the nearest design point is 
maximal” (maximin distance)
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G-G LENSING SIMULATIONS

ωb = Ωbh2: ±5%
ωc = Ωch2: ±10%
ΩΛ: ±20%
ln(1010 As): ±20%
ns: ±5%
w: ±20%

 parameter space sweep 
‣ “sliced” LH design (Ba, 

Brenneman & Myers ’15) 
‣ generate >100 sample eventually 
‣ maxi-min distance LH design for 

each 20 model set (e.g., red/blue 
points) 

‣ two suites of runs 
‣ keep the initial random 

number seed (20 done) 
‣ different seeds (40) 
‣ red: emulator 
‣ blue: validation

Simulation spec 
✓ N of particles: 20483 
✓ Size: 5 billion lightyears 
✓ 21 outputs per model 
✓ 5 Tbyte data per model 

84 sims are already available

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

G-G LENSING SIMULATIONS                                       



SUPERCOMPUTING AND BIG DATA

理研 三好チーム プレゼンより



G-G LENSING SIMULATIONS

ωb = Ωbh2: ±5%
ωc = Ωch2: ±10%
ΩΛ: ±20%
ln(1010 As): ±20%
ns: ±5%
w: ±20%

 parameter space sweep 
‣ “sliced” LH design (Ba, 

Brenneman & Myers ’15) 
‣ generate >200 sample eventually 
‣ maxi-min distance LH design for 

each 20 model set (e.g., red/blue 
points) 

‣ two suites of runs 
‣ keep the initial random 

number seed (20 done) 
‣ different seeds (40) 
‣ red: emulator 
‣ blue: validation

fiducial model 
‣ PLANCK15 (flat ΛCDM) 
‣ 24 realizations done 
‣ assess statistical error 
‣ emulator accuracy check

119 sims are already available

EFFICIENT SAMPLING IN MULTI DIMENSIONAL SPACE: LATIN HYPERCUBE

G-G LENSING SIMULATIONS                                       



G-G LENSING SIMULATIONS

SIMULATION SPEC

✓ N of particles: 20483 

✓ box size: 1h-1Gpc 

resolve a 1012 h-1Msolar halo with ~100 
particles 

✓ 2nd-order Lagrangian PT 
initial condition @ zin=59  
(vary slightly for different cosmologies 
to keep the RMS displacement about 
25% of the inter-particle separation) 

✓ Tree-PM force by L-Gadget2  
(w/ 40963 PM mesh) 

✓ 21 outputs in 0 ≦ z ≦ 1.5  
(equispaced in linear growth factor) 

✓ Data compression (256GB -> 
48GB par snapshot) 

✓ positions -> displacement (16 bits 
par dimension; accuracy ~1h-1kpc) 

✓ velocity: discard after halo 
identification 

✓ ID: rearrange the order of particles 
by ID and then discard 

✓ already consuming ~200TB in half a 
year (~observational data)



SIMULATIONS

SIMULATION PIPELINE

IC generator

Gadget2

FOF (on the fly)

subfind

rockstar

mass/profile 
determination

density estimate final catalog

prediction

on supercomputer 
(XC30 @NAOJ; using 648 cores)

on-the-fly analysis stream

object identification

create “universes”

time evolution
data analysis

locations of 
cluster-size halos

~2TB, 2+2days / 1 run



GAUSSIAN PROCESS
‣ A machine-learning technique to do 

inference in function space 
‣ non-parametic Bayesian inference 
‣ nonlinear regression analysis 

‣ Basic quantities                                      
f(x) ~ P [μ (x), k(x, x')] 
‣ mean function (cf. mean) 
‣ covariance function (cf. variance) 

‣ covariance function is characterized 
by a simple function with several 
hyper parameters
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matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:
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The posterior distribution (45.34) is given by
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We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
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)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
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1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN ) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.
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The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.

answer: 
ex.

✓infer hyper parameters θ from 
training data (xi, ti) 

✓Given a point xN+1, infer tN+1 from θ 
and (xi, ti)

(x1, t1)
(x2, t2)

(x3, t3)
(x4, t4)

(x5, t5)
(x6, t6)

"length scale" ri for each xi 
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G-G LENSING SIMULATIONS

OUR ΔΣ EMULATOR DEMONSTRATIONS

[2x1014, 4x1014] Msun      

[5x1013, 1x1014] Msun      



GAUSSIAN PROCESS ACCURACY

fractional error

training with 20 models (red) 
validation with 20 other models (blue)

realizations with different random # seeds

G-G LENSING SIMULATIONS



G-G LENSING SIMULATIONS

HMF EMULATOR PERFORMANCE

PLANCK cosmology
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Read out pre-computed PCA basis function + GP

Prepare a table for 3D spline

Inputs: 
‣ scale factor 
‣ number density 
‣ projected distance

(or halo mass)

give your cosmological params ~5s
and redshifts ~600ms; HMF GP called inside

convert M_min to n_h ~50μs

Evaluate !! ~1ms



SUMMARY + FUTURE
▸ Modeling the halo mass function and galaxy-

galaxy lensing signal 
▸ Latin hypercube design + fitting/GP/spline 
▸ handy emulator in python ready 
▸ accuracy test undergoing, aimed at 5% accuracy 

▸ To come 
▸ scikit-learn → george 
▸ RSD emulator to combine g-g lensing and 3D 

clustering (needs bigger volume) 
▸ further extension under discussion 
▸ e.g., non-flat, w0-wa cosmologies

G-G LENSING SIMULATIONS

： 
：

(6++)-D cosmological 
parameter space

other dependence 
(time, scale, mass, …)



Dark	ma'er									+	adiaba-c	gas								+gal.	model									

Osato,	Shirasaki,	NY,	2015							

MF	V0

SFadiaba(c

Don't	forget,	however,	the	effect	of	baryons



Parameter	bias	
with	respect	to	naive	es-mate		
from	dark	ma'er	only	simula-ons							

mean
density

dark energy 
EoS                     

Osato,	Shirasaki,	NY,	2015							

Need	for	accurate	templates


