連星中性子星からの重力波に対する高 精度計算

木内建太(京都大学基礎物理学研究所)

柴田大(京大基研)、久徳浩太郎(KEK)、関口雄一郎(東邦 大)

Direct first detection of GWs by advanced LIGO

- ▶ Binary BH merger of 36 solar mass-29 solar mass
- ► And GW151226 (Abbott et al. 16)

Dawn of the GW astronomy

- ► O_2 run of advance LIGO.
- ⇒Worldwide GW detector network in 2018–2019
- ► NS-NS merger : 8^{+10}_{-5} events/yr (Kim et al. 15)
- ► BH-NS merger : 0.2-300 event/yr (Abadie et al. 10)

Role of simulation in GW physics Figuring out a realistic picture of BH-BH, NS-NS, BH-NS mergers

Numerical relativity simulations on super-computer with a code implementing all the fundamental interactions

The NR simulations of the BH-BH merger played an essential role for the first detection

Science target of GWs from compact binary

► GW150914 is consistent with GR prediction (Abott et al. 16)

 Exploring the equation of state of neutron star matter
 Determination of NS radius (NS tidal deformability) (Flanagan & Hinderer 08 etc.)

■ Revealing the central engine of SGRBs
■ Merger hypothesis (Narayan, Paczynski, and Piran 92)

Origin of the heavy elements

R-process nucleosynthesis site (Lattimer & Schramm 76)
 Electromagnetic counter part (Li & Paczynski 98)

Exploring a realistic picture of NS-NS mergers

Evolution path depends on the total mass and maximum mass of NSs

Science target of inspiral to late-inspiral phase : Measuring a tidal deformability of NS

From inspiral to late inspiral phase

Tidal deformation : NS just before the merger could be deformed by a tidal force of its companion.

Tidal deformability depends on NS constituent, i.e., EOS. <u>Tidal deformation</u>

Stiff EOS (larger R)

Soft EOS (small R)

Easily tidally deformed

Hard to be tidally deformed

How is tidal deformability imprinted in GWs ?

$$\begin{split} h = \underline{A(t)} e^{i \underline{\Phi(t)}} & \Phi(t) = \Phi_{\rm Point\ Particle}(t) + \Phi_{\rm tidal}(t) \\ & \text{Amplitude} \end{split}$$

Tidal deformation accelerates the phase evolution.

For the calibration of EOS waveforms

Large tidal deformability \Rightarrow Rapid phase evolution Numerical diffusion \Rightarrow Rapid phase evolution

Current status tidal deformability of NSs

Hotokezaka et al. 13, 15, 16

• $\Delta \Phi_{\rm error} \approx 3 - 4$ radian

Still not sufficient for the template \Rightarrow Need higher res. simulations

A step towards accurate late inspiral waveform

Supercomputers accelerate NR waveform production.

Cost = 1.5-2 month for "best" resolution (1.6 times higher resolution than in Hotokezaka et al.)

24 TFlops month/model \Rightarrow Systematic study is possible

Waveform production : over 100 waveforms/yr

Current run: 5 EOSs \times 1.35–1.35M_{\odot} \times 7 resolutions

AMR - NR code SACRA

- ► Original SACRA (Shared memory ver.) ⇒ Parallelization
- ► MPI optimization based on K-project code

Result of EOS 1.5H ($R_{1.35M\odot}$ = 13.7 km)

- ► Merger time ^{def} Maximum amplitude of GW
- High res. \Rightarrow Merger time is extended

- Convergence order = 1.7, Merger time = $11,926 \text{ M}_{\odot}$
- Convergence order = 2.1, Merger time = $11,915 \text{ M}_{\odot}$
- Convergence order = 3.8, Merger time = 11,879 M_{\odot}
- Convergence order = 1.7, Merger time = $11,926 \text{ M}_{\odot}$

Result of EOS 1.5H ($R_{1.35M\odot}$ = 13.7 km) Dephase of GWs 15H-135-135-00155 120 m - 104 m 142 m - 104 m 153 m - 104 m 173 m - 104 m 0.8200 m - 104 m 223 m - 104 m $\Delta \Phi$ [rad] 0.6 0.4 0.2 0 15 20 25 30 35 40 45 50 55 10

Merger time of the best res. run
Merger time

t_{ret} [ms]

- ▶ 0.4 rad for best and 2nd best res. run
- (cf. 3-4 rad in Hotokezaka et al. 15)
- ► Taking a continuum limit

Result of EOS 1.5H ($R_{1.35M\odot}$ = 13.7 km)

Continuum limit on each time slice

Phase evolution

Res. dependence of phase

Least-square fit w.r.t. the resolution on each time slice

- Improving the convergence order if we use only high res. runs.
- ► Systematic error in phase is ~1 rad.
- Phase error due to the merger time is not estimated.
- Effective One Body waveform calibration with the best res. run ? / Higher res. run?

Optimization of SACRA-MPI (AMR-code)

Single node tuning : Repealing of pointer & line access

- Einstein Solver : 1.77 times faster
- ► Hydro. Solver : 3.16 times faster
- Primitive Recovery:
- 2.35 times faster
- ► Total : 2.2 times faster

Primitive recovery part

Summary

►Deriving a realistic picture of compact binary mergers is an urgent issue

Supercomputers accelerate NR waveform production !!

BNS merger

- High-precision GW forms in inspiral and late inspiral phase
 Template bank
- Evolution in post merger phase (B-field, Neutrino)