格子QCDによるバリオン間力の決定 一現状と展望一

土井 琢身 (理研・仁科センター)

- イントロダクション
- 「京」での成果
- 「ポスト京」に向けて

2016/03/31

京からポスト京に向けてシンポジウム @ 神田

Nuclear- and Astro- physics based on QCD Neutron Star / Supernova **QCD** Vacuum Baryon Nuclei Few-Body **Nucleosynthesis** Baryon QCD Forces ab-initio nuclear calc. **1st-principle** Lattice QCD **EoS of Dense Matter Nuclear Forces / Hyperon Forces** APR Hitomi **3N** J1614-2230 2 Materials and Life Scient PSR1913+16 1.5 Μ Mo 2N Y dof 0.5 0 RIBF **J-PARC** aLIGO/KAGRA 8 10 12 14 R (km)

Towards realistic LQCD Baryon Forces

HAL QCD method

Lat Nuclear Force **NBS** wave func. Lattice QCD 100 600 1.2 500 NN wave function $\phi(r)$ 1.0 50 V_C(r) [MeV] 400 0.8 φ(x,y,z=0;¹S_c) 300 1.5 c 0.6 200 1.0 0.4 0.5 -50 100 0.0 0.5 1.0 1.5 2.0 0.2 v[fm] 0 0.0 1.0 1.5 0.0 0.5 2.0 0.5 1.0 1.5 2.0 0.0 r [fm] r [fm] $\left(k^2/m_N - H_0\right)\psi(\vec{r}) = \int d\vec{r}' U(\vec{r},\vec{r}')\psi(\vec{r}')$ $\langle 0|N(\vec{r})N(\vec{0})|N(\vec{k})N(-\vec{k}),in\rangle$ $\psi_{NBS}(\vec{r})$ = $e^{i\delta_l(k)}\sin(kr-l\pi/2+\delta_l(k))/(kr)$ \simeq *E-indep* (& non-local) Potential: (at asymptotic region) Faithful to phase shifts Analog to ... **Phase shifts Phen. Potential** Scattering Exp. 300 ${}^{1}S_{0}$ ¹S₀ channel virtual state 60 200 mid-range attraction V_c (r) [MeV] 0 40 short-range repulsive 2π, 3π, ... π 20 core repulsion (σ, ρ, ω, ...) 0 Bonn Reid93 -100 **AV18**

-20 0

100

200

 $T_{\rm lab}$ [MeV]

300

400

r [fm]

2

0

0.5

1

1.5

2.5

Crucial Development for Phys Point calc

Reliable LQCD method: Time-dependent HAL method

N.Ishii et al. (HAL Coll.) PLB712(2012)437

- [Luscher's method] → ground state saturation → very bad S/N

 \rightarrow "exponential" S/N Improvement $S/N \sim \exp[-A \times (m_N < 3/2m_\pi) \times t]$

- - Talk by Ishii

Coupled Channel systems

S. Aoki et al. (HAL Coll.) Proc.Jpn.Acad.B87(2011)509

- **Coupled channel potentials** can be extracted above inelastic threshold _
 - ➔ Essential for YN/YY-forces

 \rightarrow Talk by Sasaki

Unified Contraction Algorithm (UCA)

TD, M.Endres, CPC184(2013)117

Drastically faster algorithm by unifying Wick and color/spinor contractions

Speedup:

 $\times 192$ for ${}^{3}\text{H}/{}^{3}\text{He}$, $\times 20736$ for ${}^{4}\text{He}$, $\times 10^{11}$ for ${}^{8}\text{Be}$

Strategy for phys point in "K-era"

Central/tensor forces for all NN/YN/YY in P=(+) (S, D-waves)

Code:

Efficient implementation of UCA Performance on K @ 2048node: ~17% → ~25% of peak (~65 Tflops sustained)

Setup:

Wall source w/ Coulomb gauge #stat ~= 200conf x 4rot x 44src → ~x2-4 in FY2015-16

→ <u>HIC experiments ?</u>

c.f. Phen. model (Nijmegen) : possibly bound EFT (Haidenbauer et al. '14) : unbound favored

(2-gauss + 2-OBEP fit) (200conf x 4rot x 44src)

NN-Potentials (tensor)

- Qualitatively similar attractive tail as OPEP force
- Larger t w/ larger #stat is desirable

Objectives in "Post-K-era"

- Semi-quantitative results (small |S|) → quantitative results
- Central/tensor forces & spin-orbit forces (LS/ALS) for all NN/YN/YY in P=(+) & P=(-) channels

$$U_{+}(\vec{r},\vec{r'}) = V_{c}(r) + S_{12}V_{T}(r) + \vec{L} \cdot \vec{S}V_{LS}(r) + \cdots \qquad \mathsf{P}=(+)$$

$$U_{-}(\vec{r},\vec{r'}) = V_{c}(r) + S_{12}V_{T}(r) + \vec{L} \cdot \vec{S}V_{LS}(r) + \cdots \qquad \mathsf{P}=(-)$$

$$\mathsf{LO} \qquad \mathsf{LO} \qquad \mathsf{NLO} \qquad \mathsf{"Post-K"}$$

"K"

- Magic number
- Superfluidity ³P₂ in neutron star

• 3-body forces

- Stable & unstable nuclei
- Properties of high dense matter (w/ hyperon DoF)
- EoS based on LQCD baryon forces

Strategy in FY2016

- P=(+) forces, central & tensor
 - Improve #stat by x2
 - R&D of new methods to improve S/N
- P=(-) forces and LS/ALS forces
 - Systematic studies in SU(3) limit @ heavy masses
 - SU(3) breaking effect @ heavy masses
- 3-body forces
 - Quark mass dependence for 3-nucleon forces
 - 3-baryon forces w/ hyperon in SU(3) limit
- Collaboration w/ LQCD group @ Berkeley, USA
- Collaboration w/ NP group @ Surrey, UK

<u>Nf=2+1, m π =0.51 GeV</u>

<u>Nf=2, mπ=0.76-1.1 GeV</u>

Short-range repulsive 3NF

Kernel (B/F~=4): ~50% efficiency achieved !

<u>Summary</u>

- LQCD Baryon Forces at ~ phys. point in [K-era]
 - m(pi) ~= 145 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Central & Tensor forces calculated for all NN/YN/YY in P=(+) channel
 - Key formula / algorithm
 - t-dep HAL QCD method
 - Coupled channel formalism
 - Unified contraction algorithm (UCA)

• EE-forces

- ¹S₀: strong attraction but unbound

• NN-forces

- Tensor force is clearly visible
- Prospects
 - Measurement in progress \rightarrow #stat will be ~ x2 x4 in FY2015-16
 - New techniques to improve S/N are under R&D
 - [Post-K Exascale-Era] LS-forces, P=(-) channel, 3-baryon forces etc

