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to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.

2

The Astrophysical Journal, 749:98 (17pp), 2012 April 20 Takiwaki, Kotake, & Suwa

to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.

2

The Astrophysical Journal, 749:98 (17pp), 2012 April 20 Takiwaki, Kotake, & Suwa

to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.

2

The Astrophysical Journal, 749:98 (17pp), 2012 April 20 Takiwaki, Kotake, & Suwa

to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.
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to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
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(ρ0).
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超新星親星の密度分布 
Woosley, Heger, & Weaver (2002)	


超新星を特徴付ける量： 
　ニュートリノ光度、爆発エネルギー、 
　ニッケル生成量、PNS/BH質量、etc. 
 
これらは初期条件（親星の構造）とどのよう
な関係にあるか？	




方針：元素合成・銀河化学進化を見据えた 
超新星の系統的研究	


Ø  Step 1: 時間・空間を限定して超新星の系統的性質を解明 
KN+’15 PASJ, 67 (6) 107 
 
 
まずは計算領域を中心の鉄コア周辺に限定. 
幅広い質量域（M = 10.8-75 Mo）、金属量（Z = 0-1 Zo）の親星を使用. 

 → 計 ３７８モデル 
空間２次元　→ 対流, SASIが発生. 
ニュートリノ輸送を解く　→ パラメータなしの self-consistent 計算. 
核反応も同時に解く　→ Ni合成量の見積もり. 

Ø  Step 2: “代表的な”モデルを選んで長時間計算 
KN+, in prep. 
 
 
同じセットアップ（EoSは拡張）で広範囲・長時間計算. 

 → 最終的な爆発エネルギーは？　ニッケル合成量は？ 
 → ポストプロセスで大規模核反応ネットワーク計算.	


	


R<5,000km, t<1.5s	


R<100,000km, t<10s	




 
•  親星モデル 

–  M = 10.8-75 Mo, Z = 0-1 Zo, 回転・磁場なし 
    計 378 モデル (Woosley, Heger, & Weaver ’02)

•    数値計算コード 
–  詳細は KN+’15 PASJ, 67 (6) 107 参照 
–  2D, n(r)*n(θ) = 384*128 
　　 　      r = 0-5000 km, θ = 0-π
–  ニュートリノ輸送スキーム 
　 νe,νe：IDSA spectral transport (Liebendoerfer+09) 
    νx：leakage scheme  
    with 20 energy bins (< 300 MeV) 

・  計算には国立天文台の共同利用計算機 
　　Cray XC30を使用（96 cores × 2.5 days / model） 

•  状態方程式 
–  LS220 (Lattimer & Swesty ’91) 

Entropy	


Density	


Systematic features of CCSNe 
KN et al., PASJ (2015)	


•  核反応 
–  13α (He-Ni) ネットワーク 



Solar-metallicity (Z=Zo) models 
s10.8 - 40.0　（#100） 

Zero-metallicity (Z=0) models 
z11.0 - 40.0　（#30） 

Metal-poor (Z=10-4Zo) models 
u11.0 - 22.8 / u23.0 - 46.8 / u47.0 - 58.8 

（#240） 

*All progenitors are from Woosley, Heger & Weaver (2002)	




ニュートリノ光度の時間発展	


νe	
 νe	


ü  378モデルのうち太陽金属量を持つ101モデルに注目（以下同様）. 
他の金属量のモデルも（示していないが）傾向は同じ. 
 

ü  モデルによってニュートリノ光度に２倍以上の大きな差. 
2-6 ×1052 erg/s @ t = 200 ms. 

※ smoothed over Δt = 20 ms.	


コンパクトネスパラメータ 
（O’Connor & Ott 2011） 
 
 
 
各親星の構造に対応.	
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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ü  コンパクトネスで色分けすると単調な傾向. 
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ü  378モデルのうち太陽金属量を持つ101モデルに注目（以下同様）. 
他の金属量のモデルも（示していないが）傾向は同じ. 
 

ü  モデルによってニュートリノ光度に２倍以上の大きな差. 
2-6 ×1052 erg/s @ t = 200 ms. 
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方針：元素合成・銀河化学進化を見据えた 
超新星の系統的研究	


Ø  Step 1: 時間・空間を限定して超新星の系統的性質を解明 
KN+’15 PASJ, 67 (6) 107 
 
 
爆発の特徴的な量（ニュートリノ光度、PNS質量等） 
はコンパクトネス ξ の関数として表すことが可能. 

 → しかし爆発エネルギーや元素合成反応は 
　　　　　まだ収束していない. 

 
Ø  B. Mueller ’15 
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290 B. Müller

Figure 2. Shock propagation and diagnostic explosion energy Eexpl for the
11.2 M⊙ progenitor in 2D and 3D. The top panel shows the maximum,
minimum (solid), and average (dashed) shock radius for model s11.2_2Da
(black), s11.2_2Db (blue), and s11.2_3D (red). The middle and bottom
panels show the diagnostic explosion energy Eexpl and its time derivative
dEexpl/dt.

Doppler shift and aberration. The neutrino rates include emission,
absorption, and elastic scattering by nuclei and free nucleons [along
the lines of Bruenn (1985)] as well as an effective one-particle rate
for nucleon–nucleon bremsstrahlung and an approximate treatment
of the energy exchange in neutrino–nucleon scattering reactions.
Comparisons of the FMT scheme with the more sophisticated rel-
ativistic neutrino transport solver VERTEX (Rampp & Janka 2002;
Müller et al. 2010) showed excellent qualitative and good quantita-
tive agreement. For more details, we refer the reader to Müller &
Janka (2015).

In order to further alleviate the time-step constraint, the inner-
most part of the computational domain (where densities exceed
∼5 × 1011 g cm−3) is calculated in spherical symmetry using a con-
servative implementation of mixing-length theory for proto-neutron
star convection, a procedure that has been used in the context of su-
pernova simulations before (e.g. Wilson & Mayle 1988; Hüdepohl
2014). The transition density is adjusted such that it lies inside the
convectively stable cooling layer.

In the high-density regime, we use the equation of state (EoS) of
Lattimer & Swesty (1991) with a bulk incompressibility modulus
of nuclear matter of K = 220 MeV. At low densities, we employ an
EoS accounting for photons, electrons, and positrons of arbitrary
degeneracy, an ideal gas contribution from baryons (nucleons, pro-
tons, α-particles, and 14 other nuclear species). Nuclear reactions
are treated using ‘flashing’ as described in Rampp & Janka (2002).

Figure 3. Shock propagation and diagnostic explosion energy Eexpl for the
different progenitors in 2D. The top and middle panels show the maximum
and average shock radius, respectively. The bottom panel shows the diag-
nostics explosion energy Eexpl as a function of time (solid lines). Dashed
lines show the time evolution Eexpl − Eov, i.e. the diagnostic energy cor-
rected for the binding energy (overburden) Eov of the material ahead of the
shock. Red, black, blue, light brown, and green curves are used for models
s11.0_2D, s11.2_2Da, s11.2_2Db, s11.4_2D, and s11.6_2D.

3 OVERV IEW O F SIMULATION R ESULTS

In all our simulations, runaway shock expansion sets in when the
Si/SiO interface reaches the shock and the mass accretion rate drops
rapidly. Figs 2 (all 2D/3D 11.2 M⊙ models) and 3 (long-time evo-
lution of all 2D models) provide an overview over the propagation
of the shock and the growth of the explosion energies for the dif-
ferent models; they show the maximum, minimum (only Fig. 2),
and angled-averaged shock radius, as well as the ‘diagnostic ex-
plosion energy’ Eexpl, which we define as the total net energy (i.e.
gravitational+internal+kinetic energy) of all the material that is
nominally unbound and is moving outwards with positive radial ve-
locity at a given time (cp. Müller et al. 2012a; Bruenn et al. 2014).
The nucleon rest masses are not included in the internal energy, i.e.
nucleon recombination only contributes to the diagnostic energy
once it actually takes places. Fig. 2 also shows the time derivative
of the diagnostic energy. Key results of the simulations, including
the diagnostics energy and the baryonic remnant mass at the end of
the simulations as well as estimates for the final remnant mass (see
Section 3.3 below), are given in Table 1.

3.1 Differences between 2D and 3D during the first second

For the 11.2 M⊙ progenitor, the first second after bounce is shown in
detail in Fig. 2 both in 2D and 3D. In addition, Figs 4 and 5 illustrate
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方針：元素合成・銀河化学進化を見据えた 
超新星の系統的研究	


Ø  Step 1: 時間・空間を限定して超新星の系統的性質を解明 
KN+’15 PASJ, 67 (6) 107 
 
 
爆発の特徴的な量（ニュートリノ光度、PNS質量等） 
はコンパクトネス ξ の関数として表すことが可能. 

 → しかし爆発エネルギーや元素合成反応は 
　　　　　まだ収束していない. 

Ø  Step 2: “代表的な”モデルを選んで長時間計算 
KN+, in prep. 
 
 
Step 1で爆発に転じたモデルの中から小/中/大 ξ モデルを選択 

 → M = 11.2, 17.0, 27.0 Mo の太陽金属量モデル. 
 
同じセットアップ（EoSは拡張）で広範囲・長時間計算. 

 → 最終的な爆発エネルギーは？　ニッケル合成量は？ 
 → ポストプロセスで大規模核反応ネットワーク計算.	


	


R<5,000km, t<1.5s	


R<100,000km, t<10s	
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•  親星モデル 

–  11.2, 17, 27 Mo, 太陽金属量, 回転・磁場なし 
(Woosley, Heger, & Weaver ’02)

•    数値計算コード 
–  基本的に378モデル計算と同じ 
–  2D, n(r)*n(θ) = 1008*128 
　　 　      r=0-100,000 km, θ=0-π
–  ニュートリノ輸送スキーム 
　 νe,νe：IDSA spectral transport (Liebendoerfer+09) 
    νx：leakage scheme  
    with 20 energy bins (< 300 MeV) 

・  計算には国立天文台の共同利用計算機 
　　Cray XC30を使用（576 cores × 20 days / model） 

•  状態方程式 
–  LS220 (Lattimer & Swesty ’91) + Si gas 

Entropy	


Density	


Long-term CCSN simulation 
(KN et al., in prep.)	


•  核反応 
–  13α (He-Ni) ネットワーク 
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PNS質量	


ü  全てのモデルが爆発に転じた. 
t = 7-8 秒で衝撃波が外境界@10万kmに. 
（He層の底に対応） 

ü  s11.2モデル 
爆発エネルギー、PNS質量ほぼ収束 
Eexp = 0.19 foe, Mpns = 1.36 Mo 

ü  s17.0モデル 
 ~７秒後でまだEexp, Mpns成長. 
 Eexp = 1.23 foe, Mpns = 1.85 Mo 

ü  s27.0モデル 
s17.0モデルと同様に成長. 
5.29秒後に1D GR計算で予言される限界
質量（Mpns = 2.13 Mo）に到達. 
(O’Connor & Ott ’11; KN+’15)	

→この先成長？衰退？ 

Long-term CCSN simulation 
(KN et al., in prep.)	




中心付近の降着流	


s11.2	
 s17.0	
 s27.0	


ü  s17.0 と s27.0 では冷たいdownflowが中心のPNSを叩き続ける. 
→ PNS質量増大、ニュートリノ光度維持 
→ 爆発エネルギー成長 



ポスト京に向けて	


Ø  Step 1: 時間・空間を限定して超新星の系統的性質を解明 
KN+’15 PASJ, 67 (6) 107 
爆発の特徴的な量（ニュートリノ光度、PNS質量等）はコンパクトネス ξ の関数として表
すことが可能. 

 → しかし爆発エネルギーや元素合成反応はまだ収束していない. 

Ø  Step 2: “代表的な”モデルを選んで長時間計算 
KN+, in prep. 
Step 1で爆発に転じたモデルの中から小/中/大 ξ モデルを選択し広範囲・長時間計算. 

 → 爆発エネルギーが1051ergに到達. しかし収束しない. 2Dの問題. 

R<5,000km, t<1.5s	


R<100,000km, t<10s	


Ø  Step 3: ポスト京を用いた“より現実的な”計算 
空間2D → 3D  

 × n(φ) × (Δt_2D / Δt_3D) 
2-flavor IDSA → 3-flavor IDSA + more reactions. 

 × 1.5 × n(ε) 

Ø  Step 4: マルチメッセンジャー天文学に向けて 
KN+ arXiv:1602.03028 
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Figure 1. Three-dimensional plots of entropy per baryon (top panel), τres/τheat
(bottom left panel), which is the ratio of the residency to the neutrino-heating
timescale (see the text for details), and the net neutrino-heating rate (bottom
right panel, in units of erg cm−3 s−1) for three snapshots (top and bottom left:
t = 230 ms, and bottom right: t = 150 ms measured after the bounce (t ≡ 0) of
our model 3D-H-1). The contours on the cross sections in the x = 0 (back right),
y = 0 (back bottom), and z = 0 (back left) planes are projected on the sidewalls
of the graphs. For each snapshot, the length of the white line is indicated in the
bottom right text.
(A color version of this figure is available in the online journal.)

shock expansion in this study. It should be mentioned that, by
comparing our νx luminosity estimated by the leakage scheme
with that obtained by the work of Buras et al. (2006) with
detailed neutrino transport, the peak luminosity is more than
20% smaller in our case. Such underestimation of cooling
by heavy-lepton neutrinos should lead to artificially larger
maximum shock extent (Rmax ∼ 260 km, blue line in the right
panel of Figure 2) compared to Rmax ∼ 170 km in Buras et al.
(2006). We have to emphasize that the use of the leakage scheme,
together with the omission of inelastic neutrino scattering on
electrons and general relativity (GR) effects in the present
scheme, is likely to facilitate artificially easier explosions.
Regarding our 2D models, the relatively earlier shock revival
(∼100 ms postbounce) coincides with the decline of the mass
accretion rate onto the central PNS. This could be the reason
that the timescale is similar to that in Müller et al. (2012) who
reported 2D (GR) models for the same progenitor model with
detailed neutrino transport.

As seen from Figure 3, the angle-averaged neutrino lu-
minosity (⟨Lν⟩) and the mean neutrino energy (⟨ϵν⟩ =∫

E3F sdE/
∫

E2F sdE, where E is neutrino energy) are barely
affected by the imposed initial perturbations (presumably at a
few-percent levels in amplitude). This again supports our finding
that the explosion stochasticity is very influential in determining
the blast morphology but not the working of the neutrino-heating
mechanism.

From the bottom panel of Figure 3, it can be seen that
the overall trend in the neutrino luminosities and the mean
energies is similar between our 3D and 2D models. The neutrino
luminosities in the 2D model (green lines) show a short-time
variability (with periods of milliseconds to !10 ms) after around
100 ms postbounce. Such fast variations in the postbounce
luminosity evolution have been already found in previous 2D
studies (e.g., Ott et al. 2008; Marek et al. 2009). This is caused
by the modulation of the mass accretion rate due to convective
plumes and downflows hitting onto the PNS surface (see also
Lund et al. 2012 and Tamborra et al. 2013 about the detectability
of these neutrino signals). It is interesting to note that such a
fast variability is less pronounced in our 3D model (red lines
in the bottom panel). This is qualitatively consistent with Lund
et al. (2012) who analyzed the neutrino signals from 2D and 3D
models, in which an approximate neutrino transport was solved
(Wongwathanarat et al. 2010) as in Scheck et al. (2006).

Figure 4 shows the evolution of the average PNS radius
for the 1D (blue line), 2D (green line), and 3D models (red
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Figure 2. Same as the top panel in Figure 1, but for models 3D-H-2 (left panel) and 3D-H-2 (middle panel), which produce stronger explosions closer toward the
north (left panel) and south poles (middle panel), respectively. The right panel shows the evolution of average shock radii for the high-resolution 2D (green lines) and
3D (red lines) models explored in this study (e.g., Table 1).
(A color version of this figure is available in the online journal.)
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Figure 1. Three-dimensional plots of entropy per baryon (top panel), τres/τheat
(bottom left panel), which is the ratio of the residency to the neutrino-heating
timescale (see the text for details), and the net neutrino-heating rate (bottom
right panel, in units of erg cm−3 s−1) for three snapshots (top and bottom left:
t = 230 ms, and bottom right: t = 150 ms measured after the bounce (t ≡ 0) of
our model 3D-H-1). The contours on the cross sections in the x = 0 (back right),
y = 0 (back bottom), and z = 0 (back left) planes are projected on the sidewalls
of the graphs. For each snapshot, the length of the white line is indicated in the
bottom right text.
(A color version of this figure is available in the online journal.)

shock expansion in this study. It should be mentioned that, by
comparing our νx luminosity estimated by the leakage scheme
with that obtained by the work of Buras et al. (2006) with
detailed neutrino transport, the peak luminosity is more than
20% smaller in our case. Such underestimation of cooling
by heavy-lepton neutrinos should lead to artificially larger
maximum shock extent (Rmax ∼ 260 km, blue line in the right
panel of Figure 2) compared to Rmax ∼ 170 km in Buras et al.
(2006). We have to emphasize that the use of the leakage scheme,
together with the omission of inelastic neutrino scattering on
electrons and general relativity (GR) effects in the present
scheme, is likely to facilitate artificially easier explosions.
Regarding our 2D models, the relatively earlier shock revival
(∼100 ms postbounce) coincides with the decline of the mass
accretion rate onto the central PNS. This could be the reason
that the timescale is similar to that in Müller et al. (2012) who
reported 2D (GR) models for the same progenitor model with
detailed neutrino transport.

As seen from Figure 3, the angle-averaged neutrino lu-
minosity (⟨Lν⟩) and the mean neutrino energy (⟨ϵν⟩ =∫

E3F sdE/
∫

E2F sdE, where E is neutrino energy) are barely
affected by the imposed initial perturbations (presumably at a
few-percent levels in amplitude). This again supports our finding
that the explosion stochasticity is very influential in determining
the blast morphology but not the working of the neutrino-heating
mechanism.

From the bottom panel of Figure 3, it can be seen that
the overall trend in the neutrino luminosities and the mean
energies is similar between our 3D and 2D models. The neutrino
luminosities in the 2D model (green lines) show a short-time
variability (with periods of milliseconds to !10 ms) after around
100 ms postbounce. Such fast variations in the postbounce
luminosity evolution have been already found in previous 2D
studies (e.g., Ott et al. 2008; Marek et al. 2009). This is caused
by the modulation of the mass accretion rate due to convective
plumes and downflows hitting onto the PNS surface (see also
Lund et al. 2012 and Tamborra et al. 2013 about the detectability
of these neutrino signals). It is interesting to note that such a
fast variability is less pronounced in our 3D model (red lines
in the bottom panel). This is qualitatively consistent with Lund
et al. (2012) who analyzed the neutrino signals from 2D and 3D
models, in which an approximate neutrino transport was solved
(Wongwathanarat et al. 2010) as in Scheck et al. (2006).

Figure 4 shows the evolution of the average PNS radius
for the 1D (blue line), 2D (green line), and 3D models (red
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Figure 2. Same as the top panel in Figure 1, but for models 3D-H-2 (left panel) and 3D-H-2 (middle panel), which produce stronger explosions closer toward the
north (left panel) and south poles (middle panel), respectively. The right panel shows the evolution of average shock radii for the high-resolution 2D (green lines) and
3D (red lines) models explored in this study (e.g., Table 1).
(A color version of this figure is available in the online journal.)
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Ø Detailed simulations 
 
 
 
空間2次元／3次元. 
重力崩壊・PNS形成. 
ニュートリノ輸送・相互作用を考慮. 
計算コストが非常に高い. 

 
Ø Simplified models 

 
 
 
空間１次元／２次元. 
thermal bomb ・ piston model.	

→ 元素合成計算	


R<5000km, t<1s 
（狭い、短い）	


R>~1013cm, t>~104s 
（広い、長い）	
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平均衝撃波半径	


爆発エネルギー	


PNS質量	


ü  全てのモデルが爆発に転じた. 
t = 7-8 秒で衝撃波が外境界@10万kmに. 
（He層の底に対応） 

ü  s11.2モデル 
爆発エネルギー、PNS質量ほぼ収束 
Eexp = 0.19 foe, Mpns = 1.36 Mo 

ü  s17.0モデル 
 ~７秒後でまだEexp, Mpns成長. 
 Eexp = 1.23 foe, Mpns = 1.85 Mo 

ü  s27.0モデル 
s17.0モデルと同様に成長. 
5.29秒後に1D GR計算で予言される限界
質量（Mpns = 2.13 Mo）に到達. 
(O’Connor & Ott ’11; KN+’15)	

→この先成長？衰退？ 

Long-term CCSN simulation 
(KN et al., in prep.)	




Multi-messenger signals from 17Mo CCSN	
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Galactic event @ 8.5 kpc - neutrino	


Number of targets	


ü Observed event rate: 

 
ü Timing information (via IBD): 

the bounce time within ± 3.0 ms 
at 95% confidence level. 

ü Pointing information (via e- scattering): 
~ 6° (SK), ~ 3° (Gd-SK), ~ 0.6° (Gd-HK), ~ 0.3° (DUNE) 



Galactic event @ 8.5 kpc - GW	

Inputted / reconstructed 

waveform	


S/N ratio	


Spectrogram	


ü With the aid of the timing information, 
 → small time window [0, 60] ms. 
 → hard to see time-dependent 
      waveform structure... 

ü Prompt convection 
→ small frequency window 
    [50, 500] Hz. 

 

ü The maximum S/N ratio ~ 7.5 
→ CCSN-GW is detectable  
                           even from GC! 
→ Core rotation (Yokozawa+’15) 



Galactic event - EM	


ü  Pointing information from neutrino detection 
~ 6 deg. (SK) → ~28 sq. deg. → 20 images (Subaru/HSC) 

ü  Integral time a to catch SBO (Δt <~ 1hr)  
(a+0.5)*20=30 → a=1 min. → 24-25 mag. 

ü  Time delay 
R* / v_shock ~ 1 day (RSG), a few min.! (WR) 

可視	
 近赤外	




まとめ	


Ø  Step 1: 時間・空間を限定して超新星の系統的性質を解明 
KN+’15 PASJ, 67 (6) 107 
爆発の特徴的な量（ニュートリノ光度、PNS質量等）はコンパクトネス ξ の関数として表
すことが可能. 

 → しかし爆発エネルギーや元素合成反応はまだ収束していない. 

Ø  Step 2: “代表的な”モデルを選んで長時間計算 
KN+, in prep. 
Step 1で爆発に転じたモデルの中から小/中/大 ξ モデルを選択し広範囲・長時間計算. 

 → 爆発エネルギーが1051ergに到達. しかし収束しない. 2Dの問題. 

R<5,000km, t<1.5s	


R<100,000km, t<10s	


Ø  Step 3: ポスト京を用いた“より現実的な”計算 
空間2D → 3D  
2-flavor IDSA → 3-flavor IDSA + more reactions. 

Ø  Step 4: マルチメッセンジャー天文学に向けて 
KN+ arXiv:1602.03028 
ニュートリノ検出！ → 位置・時刻情報 
                           → 重力波検出！ 
　　　　　　　　　　　　 → 光学望遠鏡観測！ 
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Figure 1. Three-dimensional plots of entropy per baryon (top panel), τres/τheat
(bottom left panel), which is the ratio of the residency to the neutrino-heating
timescale (see the text for details), and the net neutrino-heating rate (bottom
right panel, in units of erg cm−3 s−1) for three snapshots (top and bottom left:
t = 230 ms, and bottom right: t = 150 ms measured after the bounce (t ≡ 0) of
our model 3D-H-1). The contours on the cross sections in the x = 0 (back right),
y = 0 (back bottom), and z = 0 (back left) planes are projected on the sidewalls
of the graphs. For each snapshot, the length of the white line is indicated in the
bottom right text.
(A color version of this figure is available in the online journal.)

shock expansion in this study. It should be mentioned that, by
comparing our νx luminosity estimated by the leakage scheme
with that obtained by the work of Buras et al. (2006) with
detailed neutrino transport, the peak luminosity is more than
20% smaller in our case. Such underestimation of cooling
by heavy-lepton neutrinos should lead to artificially larger
maximum shock extent (Rmax ∼ 260 km, blue line in the right
panel of Figure 2) compared to Rmax ∼ 170 km in Buras et al.
(2006). We have to emphasize that the use of the leakage scheme,
together with the omission of inelastic neutrino scattering on
electrons and general relativity (GR) effects in the present
scheme, is likely to facilitate artificially easier explosions.
Regarding our 2D models, the relatively earlier shock revival
(∼100 ms postbounce) coincides with the decline of the mass
accretion rate onto the central PNS. This could be the reason
that the timescale is similar to that in Müller et al. (2012) who
reported 2D (GR) models for the same progenitor model with
detailed neutrino transport.

As seen from Figure 3, the angle-averaged neutrino lu-
minosity (⟨Lν⟩) and the mean neutrino energy (⟨ϵν⟩ =∫

E3F sdE/
∫

E2F sdE, where E is neutrino energy) are barely
affected by the imposed initial perturbations (presumably at a
few-percent levels in amplitude). This again supports our finding
that the explosion stochasticity is very influential in determining
the blast morphology but not the working of the neutrino-heating
mechanism.

From the bottom panel of Figure 3, it can be seen that
the overall trend in the neutrino luminosities and the mean
energies is similar between our 3D and 2D models. The neutrino
luminosities in the 2D model (green lines) show a short-time
variability (with periods of milliseconds to !10 ms) after around
100 ms postbounce. Such fast variations in the postbounce
luminosity evolution have been already found in previous 2D
studies (e.g., Ott et al. 2008; Marek et al. 2009). This is caused
by the modulation of the mass accretion rate due to convective
plumes and downflows hitting onto the PNS surface (see also
Lund et al. 2012 and Tamborra et al. 2013 about the detectability
of these neutrino signals). It is interesting to note that such a
fast variability is less pronounced in our 3D model (red lines
in the bottom panel). This is qualitatively consistent with Lund
et al. (2012) who analyzed the neutrino signals from 2D and 3D
models, in which an approximate neutrino transport was solved
(Wongwathanarat et al. 2010) as in Scheck et al. (2006).

Figure 4 shows the evolution of the average PNS radius
for the 1D (blue line), 2D (green line), and 3D models (red
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Figure 2. Same as the top panel in Figure 1, but for models 3D-H-2 (left panel) and 3D-H-2 (middle panel), which produce stronger explosions closer toward the
north (left panel) and south poles (middle panel), respectively. The right panel shows the evolution of average shock radii for the high-resolution 2D (green lines) and
3D (red lines) models explored in this study (e.g., Table 1).
(A color version of this figure is available in the online journal.)
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