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with the relation Rscat(Ω′; Ω) = Rscat(Ω; Ω′). The collision term
for the pair process is expressed by
[

1
c

δf

δt

]

pair
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rpair-anni(ε, Ω; ε′, Ω′)

× f (ε, Ω)f (ε′, Ω′) +
∫

dε′ε′2

(2π )3

∫
dΩ′Rpair-emis(ε, Ω; ε′, Ω′)

× [1 − f (ε, Ω)][1 − f (ε′, Ω′)], (11)

where f (ε′, Ω′) denotes the distribution of anti-neutrinos. From
the detailed balance, the following relation holds:

Rpair-anni(ε, Ω; ε′, Ω′) = Rpair-emis(ε, Ω; ε′, Ω′)eβ(ε+ε′). (12)

We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.

As for the reaction rates, we take mainly from the conven-
tional set by Bruenn (1985) with some extensions (Sumiyoshi
et al. 2005). We implement the neutrino reactions,

e− + p ←→ νe + n [ecp], (13)

e+ + n ←→ ν̄e + p [aecp], (14)

e− + A ←→ νe + A′ [eca], (15)

for the absorption/emission,

ν + N ←→ ν + N [nsc], (16)

ν + A ←→ ν + A [csc], (17)

for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:

1
c

f n+1
i − f n

i

∆t
+

[
µν

r2

∂

∂r
(r2f )

]n+1

+

[√
1 − µ2

ν cos φν

r sin θ

∂

∂θ
(sin θf )

]n+1

+

(√
1 − µ2

ν sin φν

r sin θ

∂f

∂φ

)n+1

+
{

1
r

∂

∂µν

[(
1 − µ2

ν

)
f

]}n+1

+

[

−
√

1 − µ2
ν

r

cos θ

sin θ

∂

∂φν

(sin φνf )

]n+1

=
[

1
c

δf

δt

]n+1

collision
,

(20)

where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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with the relation Rscat(Ω′; Ω) = Rscat(Ω; Ω′). The collision term
for the pair process is expressed by
[
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δt

]

pair
= −

∫
dε′ε′2

(2π )3

∫
dΩ′Rpair-anni(ε, Ω; ε′, Ω′)

× f (ε, Ω)f (ε′, Ω′) +
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dε′ε′2

(2π )3

∫
dΩ′Rpair-emis(ε, Ω; ε′, Ω′)

× [1 − f (ε, Ω)][1 − f (ε′, Ω′)], (11)

where f (ε′, Ω′) denotes the distribution of anti-neutrinos. From
the detailed balance, the following relation holds:

Rpair-anni(ε, Ω; ε′, Ω′) = Rpair-emis(ε, Ω; ε′, Ω′)eβ(ε+ε′). (12)

We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.

As for the reaction rates, we take mainly from the conven-
tional set by Bruenn (1985) with some extensions (Sumiyoshi
et al. 2005). We implement the neutrino reactions,

e− + p ←→ νe + n [ecp], (13)

e+ + n ←→ ν̄e + p [aecp], (14)

e− + A ←→ νe + A′ [eca], (15)

for the absorption/emission,

ν + N ←→ ν + N [nsc], (16)

ν + A ←→ ν + A [csc], (17)

for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:
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where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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the detailed balance, the following relation holds:
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We linearize the collision term, Equation (11), by assuming
that the distribution for anti-neutrinos is given by that in the
previous time step or the equilibrium distribution. This is a good
approximation since the pair process is dominant only in high-
temperature regions, where neutrinos are in thermal equilibrium.
We adopt the approach with the distribution in the previous time
step in all of the numerical calculations with pair processes in
the current study. We utilize further the angle average of the
distribution when we take the isotropic emission rate as we will
state. We have also tested that the approach with the equilibrium
distribution determined by the local temperature and chemical
potential works equally well.
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tional set by Bruenn (1985) with some extensions (Sumiyoshi
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for the isoenergetic scattering. We do not take into account
the neutrino–electron scattering. It is well known that the
influence of this reaction is minor although it contributes to the
thermalization (Burrows et al. 2006a). As for the pair process,
we take the electron–positron process and the nucleon–nucleon
bremsstrahlung as follows:

e− + e+ ←→ νi + ν̄i [pap], (18)

N + N ←→ N + N + νi + ν̄i [nbr]. (19)

For these pair processes, we take the isotropic emission rate
as an approximation, which avoids complexity but describes
the essential roles. We remark that the set of the reaction rates
adopted in the current study is the minimum, which describes
sufficiently the major role of neutrino reactions in the supernova
mechanism. Further implementation of other neutrino reactions
and more sophisticated description of reaction rates in the
modern version (Buras et al. 2006; Burrows et al. 2006b) will
be done once we have enough computing resources.

3.3. Equation of State

We utilize the physical EOS of dense matter to evaluate
the rates of neutrino reactions. It is necessary to have the
composition of dense matter and the related thermodynamical
quantities such as the chemical potentials and the effective mass
of nucleon. We implement the subroutine for the evaluation
of quantities from the data table of EOS as used in the other
simulations of core-collapse supernovae (Sumiyoshi et al. 2005,
2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
transfer.

We define the neutrino distributions at the cell centers and
evaluate the advection at the cell interfaces and the collision
terms at the cell centers. We describe the neutrino distributions
in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν

- and Nφν
-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
collision terms at the time step n + 1 in the following form:
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where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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approximation since the pair process is dominant only in high-
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of nucleon. We implement the subroutine for the evaluation
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2007). We adopt the table of the Shen EOS (Shen et al. 1998a,
1998b, 2011) in the current study. Other sets of EOSs can be
used by simply replacing the data table.

3.4. Numerical Scheme

We describe the numerical scheme employed in the numerical
code for the neutrino transfer in 3D. The method of the
discretization is based on the approach by Mezzacappa &
Bruenn (1993) and Castor (2004). We also refer the references
by Swesty & Myra (2009) and Stone et al. (1992) for the other
methods of discretization of neutrino transfer and radiation
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We define the neutrino distributions at the cell centers and
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in the space coordinate with radial Nr-, polar Nθ -, and azimuthal
Nφ-grid points and in the neutrino momentum space with energy
Nε-grid points and angle Nθν
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-grid points. We explain

the detailed relations to define the numerical grid in Appendix
A.2.

We discretize the Boltzmann equation, Equation (5), for the
neutrino distribution, f n

i , in a finite-differenced form on the grid
points. Here we assign the integer indices n and n + 1 for the
time steps and i for the grid position. We adopt the implicit
differencing in time to ensure the numerical stability for stiff
equations and to have long time steps for supernova simulations.
We solve the equation for f n+1

i by evaluating the advection and
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where we schematically express the advection terms for the cell
containing f n+1

i . We evaluate the advection at the cell interface
by the upwind and central differencing for free-streaming and
diffusive limits, respectively. The two differencing methods are
smoothly connected by a weighting factor in the intermediate
regime between the free-streaming and diffusive limits. We de-
scribe the numerical scheme for the evaluation of the advection
terms in Appendix A.3. We express the collision terms by the
summation of the integrand using the neutrino distributions at
the cell centers.
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Euler Equations 
Hydrodynamics

Gµν = 8πT µν

Baryon mass conservation:

Energy and momentum  
conservation:

Lepton number conservation:

Gravitation:

ρ  : barion density u : velocity

T µν ≡ [ρ(1+ e)+P]uµuν −Pgµν

P : matter pressure
e :  specific internal energy density

T µν  : energy-momentum tensor
gµν :  metric tensor ne :  electron number density

G0 :  neutrino radiation energy, Gi :  neutrino radiation pressure, 
Γ≡ Γνe − Γνe :  deleptonization rate

Gµν :  Einstein Tensor

EOS table (ρ, Ye, T)

Ye :  electron fraction ( ≡ electron number / barion number)

⇒ (Newton Approx.)Δφ = 4πρ

ρuµ( );µ = 0

T µν( );ν = −G
µ

neu
µ( );µ = −Γ
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Various	Approxima-ons	for	Mul--D	Neutrino	Transfer�

Ray-by-Ray	Approach	(MPA,	Oak	Ridge,	Kotake-Takiwaki-Suwa)�

Isotropic	Diffusion	Source	Approxima-on	(IDSA)		
(Basel,	Kotake-Takiwaki-Suwa)�

Neutrino-Advec-on	is	essen-ally	considered	under	spherical	symmetry.�

Neutrinos	are	decomposed	into	trapped	and	streaming	parts.	�

Moment	method	
(MPA,	Kyoto,	Caltech,	Basel	(Kuroda))�

Mul-plied	by	cos	θν	and	integrated	with	the	neutrino	angular	
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Two Energy Grids Approach for Momentum Space

Collision term is calculated in the rest frame using Lagrangian Remapped Grid (LRG)
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Figure 2. Left: discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial direction corresponds to neutrino
energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right: Lorentz-transformed mesh in the fluid restframe. The blue
lines correspond to the radial lines whereas the black lines are transformed from the concentric circles in the left panel. The brown dots show an isoenergy circle in
the fluid restframe for comparison. Matter is assumed to move upward in this figure.
(A color version of this figure is available in the online journal.)

This is the advection of neutrinos with matter and it should be
evident why the Lagrangian approach is advantageous in dealing
with it.

For comparison, the right panel in Figure 1 describes the same
situation except in the laboratory frame. Here, we assume that
the fluid is advected inward (or toward the left in the figure).
Since the neutrinos should be advected in the same direction
as the fluid in the laboratory frame, the incoming neutrino flux
is larger than the outgoing one, which means that the angular
distribution of neutrinos is anisotropic in this frame. From the
SR point of view, such anisotropies arise from the Doppler
shift and relativistic beaming by Lorentz transformations. The
mathematical expression of SR Boltzmann equations will be
given in Section 4.

If we neglected all SR effects, not distinguishing between the
laboratory and fluid restframes, we would not obtain the neutrino
advection with matter, which is crucial for neutrino trapping in
the collapsing phase. In fact, neutrinos would be left behind as
fluids are advected. The supernova core is not homogeneous
in reality and both matter and neutrino densities are highest at
the center. In the absence of advection, neutrinos would always
flow outward when actually they should move inward, keeping
pace with matter, and be effectively trapped in the core. As we
will show later in Section 7.5, the number density of electron-
type neutrinos becomes significantly smaller near the center
for NR simulations. This, in turn, affects the evolution of the
electron fraction and the size of inner core and eventually all the
supernova dynamics thereafter.

3. DIFFICULTIES IN HANDLING SR EFFECTS

In this section, we give more detailed intuitive explanations
about why SR treatments are not easy with the Sn method, which
we employ in this paper. The main source of difficulty is scat-
tering, particularly scattering between neutrinos and nucleons
(and nuclei). There are no technical challenges, however, with
other reactions such as neutrino absorptions and emissions.5 We
hence focus only on the isoenergetic scatterings in this section.

5 Of course, non-isoenergetic scatterings of electrons and neutrinos and pair
processes are another complication, which will be addressed in future work.

As mentioned in the previous sections, our Boltzmann hydro
code is based on the Eulerian picture, and we discretize six-
dimensional phase space in the laboratory frame, as shown in
the left panel in Figure 2. In this picture, spherical coordinates
in momentum space are adopted with the azimuthal dimension
being collapsed. The radial direction corresponds to neutrino
energy. Although the picture is drawn that way, gridding in each
dimension is not necessarily uniform.

We first consider the isoenergetic scattering under the condi-
tion of fluid being at rest and, as a consequence, the laboratory
frame coincides with the fluid restframe. When a neutrino un-
dergoes isoenergetic scattering, it changes its flight direction
specified by two angles, preserving energy. In the discretized
momentum space, the neutrino moves from one bin to another
with the same radial-grid number. The important thing is that
only the angular grid number is changed. In this case, there is
no difficulty and, indeed, this method has been implemented in
Sumiyoshi & Yamada (2012) and Sumiyoshi et al. (2014).

In the presence of non-vanishing fluid velocities, the problem
becomes qualitatively different. In this case, the laboratory
frame is different from the fluid restframe and they are related
to each other via a Lorentz transformation. The point is that
the Lorentz transformation induces changes in both energy
and angles. These energy shifts and aberrations are determined
by the Doppler factor, which depends on the fluid velocity
and neutrino angles (see Section 4). This is most clearly
demonstrated in the right panel of Figure 2, in which the
spherical coordinates given in the laboratory frame are Lorentz-
transformed to the fluid restframe. It is evident that they are
no longer spherically symmetric and distorted in the latter
frame. This picture summarizes the difficulties in treating
scatterings even if they are isoenergetic. As is well known,
the neutrino distribution function, f, is a Lorentz invariant
and its values at corresponding points in different frames are
identical. The important point, however, is the fact that grid
points are shifted by Lorentz transformations and concentric
(equivalently isoenergetic) spheres in the laboratory frame are
no longer spheres in the fluid restframe. As a consequence,
some interpolations are inevitable when evaluating the collision
terms for scatterings in the fluid restframe if one were to
avoid the v/c expansion. There are, however, several challenges
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Figure 4. Lagrangian remapped grid in the laboratory frame (left panel) and the Lorentz-transformed grid in the fluid restframe (right panel). The energy grid is
isotropic in the fluid restframe whereas it becomes anisotropic in the laboratory frame. The angular grid, on the other hand, is uniform in the laboratory frame.
(A color version of this figure is available in the online journal.)

Figure 5. Schematic pictures of the energy spectra of outgoing neutrinos in
the laboratory (upper) and fluid restframes (middle). Matter is assumed to
be optically thin and flows inward at piecewise constant velocities with a
discontinuity in the middle (lower picture). The two red crosses in the bottom
picture are the locations where we measure the neutrino spectra. The spectrum
should be unchanged across the discontinuity in the laboratory frame whereas
it will be blueshifted in the fluid restframe.
(A color version of this figure is available in the online journal.)

as long as we work in the laboratory frame, energy-derivative
terms do not appear explicitly on the left-hand side of the Boltz-
mann equation and the advection on the LFG is particularly
simple. It should be repeated that the LFG is a grid only for
temporary use to treat the neutrino advection. Accordingly, f on
the LFG, which is obtained by interpolation in our method, is
also a temporal variable. Instead, f on the LRG is the quantity
to be solved and stored in our code.

6. NUMERICAL IMPLEMENTATIONS

In this section, we explain the detailed numerical algorithm
used to implement the various elements described above in our

Figure 6. Flow chart for our Boltzmann hydro solver.
(A color version of this figure is available in the online journal.)

Boltzmann hydro solver, paying particular attention to the usage
of different energy grids. Figure 6 summarizes the multiple
steps needed to update a numerical solution from t = tn to
tn+1, where the superscripts represent the time steps. In the
following sections, we provide detailed descriptions of each
step in sequential order.

6.1. Step 1: Hydrodynamical Evolutions

In our Boltzmann hydro solver, operator splitting is employed.
We first compute hydrodynamics, neglecting neutrino interac-
tions, i.e., in an adiabatic manner, then from Steps 2 through 4,
we perform neutrino transfer for the matter distribution given in
the first step. Feedback from neutrino interactions to the internal
energy, velocity, and electron fraction of matter are taken into
account in Step 5.

The numerical code for hydrodynamical evolution is essen-
tially the same as that in Nagakura et al. (2013). It is based
on the so-called central scheme with an explicit time evolu-
tion (Kurganov & Tadmor 2000; Nagakura & Yamada 2008;
Nagakura et al. 2011). The code was successfully applied to
the simulations of standing accretion shock instability in the
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Moving Mesh

Proto-neutron star moves by non-spherically symmetric distribution 
of the matter around it. 3D Boltzmann-Hydrodynamical Code: II Moving Mesh on PNS 3

Fig. 1.— Schematic picture for the moving mesh in the 3+1 foliation of spacetime. Red line indicates the world line of coordinate origin.
Concentric circles and radial rays on each spatial hypersurface (Σt) denote the polar grid. The coordinate origin traces the motion of PNS.
See the text in more detail.

assumed to be massless. ω(0), ω(θ̄), ω(φ̄) are given as

ω(0) ≡ ν−2pαpβ∇αeβ
(0),

ω(θ̄) ≡
3
∑

i=1

ωi
∂ℓ(i)

∂θ̄
,

ω(φ̄) ≡
3
∑

i=2

ωi
∂ℓ(i)

∂φ̄
,

ωi ≡ ν−2pαpβ∇αeβ
(i). (3)

As shown in Shibata et al. (2014), these ω’s can be ex-
pressed with the Ricci rotation coefficients. Srad on the
right hand side of Eq. (1) originates from the collision
term for neutrino-matter interactions.

In the 3+1 formulation of GR, the line element is ex-
pressed as

ds2 = (−α2 + βkβk)dt2 + 2βidtdxi + γijdxidxj , (4)

where α, βi and γij denote the lapse function, shift vector
and spatial 3-metric, respectively. In our extended Boltz-
mann code, the time-like basis eα

(0) is chosen so that it
should coincide with the unit vector nα normal to the
spatial hypersurface with t = const. This choice is a nat-
ural extension from our previous SR Boltzmann solver

(see Section 3 for more details). Then three other spa-
tial tetrad bases are taken so that they should be tan-
gential to the spatial hypersurface. In this paper we as-
sume that the spacetime is flat and is foliated with flat
spatial hypersurfaces, on which we deploy the polar co-
ordinates (x1 = r, x2 = θ, x3 = φ). Then non-vanishing
components of the 3 metric are γrr = 1, γθθ = r2 and
γφφ = r2sinθ2. The spatial tetrad bases are chosen so
that the e(1) be parallel to the radial coordinate, and
e(2) be tangential to the surface spanned by ∂t and ∂θ,
and e(3) be orthogonal to the other two:

eα
(1) = (0, γ−1/2

rr , 0, 0)

eα
(2) =

(

0,−
γ−1/2

rθ
√

γrr(γrrγθθ − γ2
rθ)

,
√

γrr

γrrγθθ − γ2
rθ

, 0

)

eα
(3) =

(

0,
γrφ

√

γφφ
,

γθφ

√

γφφ
,
√

γφφ

)

. (5)

We refer to this orthonormal frame as the O-frame in the
following. In accord with the above foliation of spacetime
we set α = 1. We utilize the shift vector to deal with the
motion of the spatial coordinates (see Figure 1). In fact,
we set βi = V̄ i, where V̄ i is approximately the velocity
of PNS measured in the O-frame (see the next section
for details). Note that although the shift vector is given

α: lapse function βi : shift vector
n: unit vector normal to the spatial hyper-surface with t = constant

Boltzmann-Hydro equation in the 3+1 formalism of general relativity (GR)

(Nagakura et al. 2016)



4 Nagakura et al.

globally in this paper, it should be apparent that we
could further impose local gauge conditions to the shift
vector in possible applications of the current formulation
to (dynamical) curved spacetimes. This completes the
description of Eq. (1). We now turn to its numerical
implementations.

3. NUMERICAL IMPLEMENTATION

3.1. Shift vector

Let us suppose that the basic equations are somehow
finite-differenced and all hydrodynamics and space-time
quantities are obtained up to the n-th time step. The
average velocity of PNS at this time step (V i(n)) is then
given via the linear momentum (P) and mass of PNS (M)
as

V i(n) =
P i(n)

M (n)
,

P i(n) ≡
∫

ρ(n)vi(n+1)
o dVPNS,

M (n) ≡
∫

ρ(n)dVPNS, (6)

where ρ, vi
o and dVPNS denote the density, 3-velocity of

matter (measured in the O-frame) and volume element
in PNS, respectively. The PNS is defined to be the re-
gion, where the angle-averaged density (ρ̄) is larger than
1013g/cm3. The time derivative of the velocity, or the
acceleration of PNS, at the same time step is given by
the following relation:

dV i(n)

dt
=

(V i(n) − V i(n−1))

∆t(n−1)
, (7)

where ∆t(n−1) is the interval between the n-th and (n−
1)-th time steps.

Note that we do not use these V i and dV i/dt as they
are for the following reasons. First, V i obtained in this
way shows glitches from time to time when the PNS sur-
face traverses an interface of the radial mesh points. Sec-
ond, if the tracking of PNS motions were to be perfect,
the acceleration of PNS should be determined iteratively,
since the velocity of PNS at the next time step should
be consistent with this acceleration but is obtained only
after the advancement of the step. Such iterative process
would be very time-consuming. Fortunately, however, it
is unnecessary to exactly trace the motion of PNS and
it turns out that the following approximate treatment
suffices to deal with the proper motion of PNS.

We define the approximate PNS velocity V̄ i as follows:

V̄ i(n+1) = V̄ i(n) +
dV̄ i(n)

dt
∆t(n), (8)

with

dV̄ i(n)

dt
=

dV i(n)

dt
+ C(n) + D(n),

C(n) ≡ (V i(n) − V̄ i(n))/T,

D(n) ≡ X i(n)
m /T 2, (9)

dV i(n)/dt is given by Eq. (7); C(n) and D(n) are the
terms that allow some deviations of the coordinate ve-
locity and/or origin (denoted here by X i(n)

m ) from those

of PNS and thus avoid the glitch; T is the recovering time
and is taken to be 0.1ms in this paper. C(n) and D(n)

also prevent secular drifts of PNS. In fact Cn works as a
damper to prohibit large differences between two veloci-
ties, whereas Dn serves as an attractor to ensure that the
coordinate origin tends to the mass center of the PNS.
As an additional measure to ensure smooth coordinate
motions, we do not update the value of dV̄ i(n)/dt when
the PNS surface trespasses an interface of radial mesh
points. As demonstrated later, we find that the employ-
ment of V̄ as the shift vector in combination with the
evaluation of dV̄ i(n)/dt given above is indeed sufficient
to solve the problems with the proper motion of PNS.

Although the shift vector field thus obtained is spa-
tially uniform, its derivatives with respect to r, θ and
φ are non-vanishing, since the coordinates are curvilin-
ear. The explicit form of the Ricci rotation coefficients
are rather involved (although calculations are straight-
forwardly) numerically in the code. This will be useful
indeed, since we are required to evaluate Ricci rotation
coefficients for numerically obtained metrices in truly GR
simulations.

3.2. Modifications to SR code

Although the GR Boltzmann equation, Eq. (1), has
a simple form, the consistent treatment of the advec-
tion and collision terms is complicated even for the flat
spacetime. In Nagakura et al. (2014), we surmounted the
difficulties by introducing two energy grids: Lagrangian
remapped grid (LRG) and Laboratory fixed grid (LFG).
We also devised for the SR code some other numeri-
cal techniques (e.g., a semi-implicit method for temporal
sweep). It is therefore desirable in the GR extension to
the current SR code that we should retain these features
as much as possible. In the following, we describe how
we achieved it.

We first consider the Boltzmann equation (1) in flat
spacetime. The tetrad bases, Eqs. (5), are reduced in
this case to

eα(F )
(0) = (1, 0, 0, 0),

eα(F )
(1) = (0, 1, 0, 0),

eα(F )
(2) =

(

0, 0,
1

r
, 0

)

,

eα(F )
(3) =

(

0, 0, 0,
1

rsinθ

)

, (10)

where the subscripts ”F” hereafter implies quantities in
the flat spacetime. Then we can evaluate the ω variables
in Eq. (3) as:

ω(F )
(0) = 0,

ω(F )
(θ̄)

= −
sinθ̄

r
,

ω(F )
(φ̄)

= −
cotθ

r
sin3θ̄ sinφ̄. (11)

Substituting these results into Eq. (1) and using the de-
terminant of the metric for the fixed polar coordinates in
the flat spacetime (

√

−g(F ) = r2sinθ), we reproduce the
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V̄ i(n+1) = V̄ i(n) +
dV̄ i(n)

dt
∆t(n), (8)

with

dV̄ i(n)

dt
=

dV i(n)

dt
+ C(n) + D(n),

C(n) ≡ (V i(n) − V̄ i(n))/T,

D(n) ≡ X i(n)
m /T 2, (9)

dV i(n)/dt is given by Eq. (7); C(n) and D(n) are the
terms that allow some deviations of the coordinate ve-
locity and/or origin (denoted here by X i(n)

m ) from those

of PNS and thus avoid the glitch; T is the recovering time
and is taken to be 0.1ms in this paper. C(n) and D(n)

also prevent secular drifts of PNS. In fact Cn works as a
damper to prohibit large differences between two veloci-
ties, whereas Dn serves as an attractor to ensure that the
coordinate origin tends to the mass center of the PNS.
As an additional measure to ensure smooth coordinate
motions, we do not update the value of dV̄ i(n)/dt when
the PNS surface trespasses an interface of radial mesh
points. As demonstrated later, we find that the employ-
ment of V̄ as the shift vector in combination with the
evaluation of dV̄ i(n)/dt given above is indeed sufficient
to solve the problems with the proper motion of PNS.

Although the shift vector field thus obtained is spa-
tially uniform, its derivatives with respect to r, θ and
φ are non-vanishing, since the coordinates are curvilin-
ear. The explicit form of the Ricci rotation coefficients
are rather involved (although calculations are straight-
forwardly) numerically in the code. This will be useful
indeed, since we are required to evaluate Ricci rotation
coefficients for numerically obtained metrices in truly GR
simulations.

3.2. Modifications to SR code

Although the GR Boltzmann equation, Eq. (1), has
a simple form, the consistent treatment of the advec-
tion and collision terms is complicated even for the flat
spacetime. In Nagakura et al. (2014), we surmounted the
difficulties by introducing two energy grids: Lagrangian
remapped grid (LRG) and Laboratory fixed grid (LFG).
We also devised for the SR code some other numeri-
cal techniques (e.g., a semi-implicit method for temporal
sweep). It is therefore desirable in the GR extension to
the current SR code that we should retain these features
as much as possible. In the following, we describe how
we achieved it.

We first consider the Boltzmann equation (1) in flat
spacetime. The tetrad bases, Eqs. (5), are reduced in
this case to

eα(F )
(0) = (1, 0, 0, 0),

eα(F )
(1) = (0, 1, 0, 0),

eα(F )
(2) =

(

0, 0,
1

r
, 0

)

,

eα(F )
(3) =

(

0, 0, 0,
1

rsinθ

)

, (10)

where the subscripts ”F” hereafter implies quantities in
the flat spacetime. Then we can evaluate the ω variables
in Eq. (3) as:

ω(F )
(0) = 0,

ω(F )
(θ̄)

= −
sinθ̄

r
,

ω(F )
(φ̄)

= −
cotθ

r
sin3θ̄ sinφ̄. (11)

Substituting these results into Eq. (1) and using the de-
terminant of the metric for the fixed polar coordinates in
the flat spacetime (

√

−g(F ) = r2sinθ), we reproduce the
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assumed to be massless. ω(0), ω(θ̄), ω(φ̄) are given as

ω(0) ≡ ν−2pαpβ∇αeβ
(0),

ω(θ̄) ≡
3
∑

i=1

ωi
∂ℓ(i)

∂θ̄
,

ω(φ̄) ≡
3
∑

i=2

ωi
∂ℓ(i)

∂φ̄
,

ωi ≡ ν−2pαpβ∇αeβ
(i). (3)

As shown in Shibata et al. (2014), these ω’s can be ex-
pressed with the Ricci rotation coefficients. Srad on the
right hand side of Eq. (1) originates from the collision
term for neutrino-matter interactions.

In the 3+1 formulation of GR, the line element is ex-
pressed as

ds2 = (−α2 + βkβk)dt2 + 2βidtdxi + γijdxidxj , (4)

where α, βi and γij denote the lapse function, shift vector
and spatial 3-metric, respectively. In our extended Boltz-
mann code, the time-like basis eα

(0) is chosen so that it
should coincide with the unit vector nα normal to the
spatial hypersurface with t = const. This choice is a nat-
ural extension from our previous SR Boltzmann solver

(see Section 3 for more details). Then three other spa-
tial tetrad bases are taken so that they should be tan-
gential to the spatial hypersurface. In this paper we as-
sume that the spacetime is flat and is foliated with flat
spatial hypersurfaces, on which we deploy the polar co-
ordinates (x1 = r, x2 = θ, x3 = φ). Then non-vanishing
components of the 3 metric are γrr = 1, γθθ = r2 and
γφφ = r2sinθ2. The spatial tetrad bases are chosen so
that the e(1) be parallel to the radial coordinate, and
e(2) be tangential to the surface spanned by ∂t and ∂θ,
and e(3) be orthogonal to the other two:

eα
(1) = (0, γ−1/2

rr , 0, 0)

eα
(2) =

(

0,−
γ−1/2

rθ
√

γrr(γrrγθθ − γ2
rθ)

,
√

γrr

γrrγθθ − γ2
rθ

, 0

)

eα
(3) =

(

0,
γrφ

√

γφφ
,

γθφ

√

γφφ
,
√

γφφ

)

. (5)

We refer to this orthonormal frame as the O-frame in the
following. In accord with the above foliation of spacetime
we set α = 1. We utilize the shift vector to deal with the
motion of the spatial coordinates (see Figure 1). In fact,
we set βi = V̄ i, where V̄ i is approximately the velocity
of PNS measured in the O-frame (see the next section
for details). Note that although the shift vector is given
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(see Section 3 for more details). Then three other spa-
tial tetrad bases are taken so that they should be tan-
gential to the spatial hypersurface. In this paper we as-
sume that the spacetime is flat and is foliated with flat
spatial hypersurfaces, on which we deploy the polar co-
ordinates (x1 = r, x2 = θ, x3 = φ). Then non-vanishing
components of the 3 metric are γrr = 1, γθθ = r2 and
γφφ = r2sinθ2. The spatial tetrad bases are chosen so
that the e(1) be parallel to the radial coordinate, and
e(2) be tangential to the surface spanned by ∂t and ∂θ,
and e(3) be orthogonal to the other two:
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We refer to this orthonormal frame as the O-frame in the
following. In accord with the above foliation of spacetime
we set α = 1. We utilize the shift vector to deal with the
motion of the spatial coordinates (see Figure 1). In fact,
we set βi = V̄ i, where V̄ i is approximately the velocity
of PNS measured in the O-frame (see the next section
for details). Note that although the shift vector is given
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sume that the spacetime is flat and is foliated with flat
spatial hypersurfaces, on which we deploy the polar co-
ordinates (x1 = r, x2 = θ, x3 = φ). Then non-vanishing
components of the 3 metric are γrr = 1, γθθ = r2 and
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following. In accord with the above foliation of spacetime
we set α = 1. We utilize the shift vector to deal with the
motion of the spatial coordinates (see Figure 1). In fact,
we set βi = V̄ i, where V̄ i is approximately the velocity
of PNS measured in the O-frame (see the next section
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We refer to this orthonormal frame as the O-frame in the
following. In accord with the above foliation of spacetime
we set α = 1. We utilize the shift vector to deal with the
motion of the spatial coordinates (see Figure 1). In fact,
we set βi = V̄ i, where V̄ i is approximately the velocity
of PNS measured in the O-frame (see the next section
for details). Note that although the shift vector is givenα: lapse function βi : shift vector γij : spatial 3-metric

How to determine Vi

Pi : momentum of PNS Mi : mass of PNS Vi : kick velocity of PNS
Xmi : deviation of origin from PNS v0i : 3-velocity measured in the O-frame
dVPNS : angle-averaged ρ > 1013 g cm-1
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globally in this paper, it should be apparent that we
could further impose local gauge conditions to the shift
vector in possible applications of the current formulation
to (dynamical) curved spacetimes. This completes the
description of Eq. (1). We now turn to its numerical
implementations.

3. NUMERICAL IMPLEMENTATION

3.1. Shift vector

Let us suppose that the basic equations are somehow
finite-differenced and all hydrodynamics and space-time
quantities are obtained up to the n-th time step. The
average velocity of PNS at this time step (V i(n)) is then
given via the linear momentum (P) and mass of PNS (M)
as

V i(n) =
P i(n)

M (n)
,

P i(n) ≡
∫

ρ(n)vi(n+1)
o dVPNS,

M (n) ≡
∫

ρ(n)dVPNS, (6)

where ρ, vi
o and dVPNS denote the density, 3-velocity of

matter (measured in the O-frame) and volume element
in PNS, respectively. The PNS is defined to be the re-
gion, where the angle-averaged density (ρ̄) is larger than
1013g/cm3. The time derivative of the velocity, or the
acceleration of PNS, at the same time step is given by
the following relation:

dV i(n)

dt
=

(V i(n) − V i(n−1))

∆t(n−1)
, (7)

where ∆t(n−1) is the interval between the n-th and (n−
1)-th time steps.

Note that we do not use these V i and dV i/dt as they
are for the following reasons. First, V i obtained in this
way shows glitches from time to time when the PNS sur-
face traverses an interface of the radial mesh points. Sec-
ond, if the tracking of PNS motions were to be perfect,
the acceleration of PNS should be determined iteratively,
since the velocity of PNS at the next time step should
be consistent with this acceleration but is obtained only
after the advancement of the step. Such iterative process
would be very time-consuming. Fortunately, however, it
is unnecessary to exactly trace the motion of PNS and
it turns out that the following approximate treatment
suffices to deal with the proper motion of PNS.

We define the approximate PNS velocity V̄ i as follows:

V̄ i(n+1) = V̄ i(n) +
dV̄ i(n)

dt
∆t(n), (8)

with

dV̄ i(n)

dt
=

dV i(n)

dt
+ C(n) + D(n),

C(n) ≡ (V i(n) − V̄ i(n))/T,

D(n) ≡ X i(n)
m /T 2, (9)

dV i(n)/dt is given by Eq. (7); C(n) and D(n) are the
terms that allow some deviations of the coordinate ve-
locity and/or origin (denoted here by X i(n)

m ) from those

of PNS and thus avoid the glitch; T is the recovering time
and is taken to be 0.1ms in this paper. C(n) and D(n)

also prevent secular drifts of PNS. In fact Cn works as a
damper to prohibit large differences between two veloci-
ties, whereas Dn serves as an attractor to ensure that the
coordinate origin tends to the mass center of the PNS.
As an additional measure to ensure smooth coordinate
motions, we do not update the value of dV̄ i(n)/dt when
the PNS surface trespasses an interface of radial mesh
points. As demonstrated later, we find that the employ-
ment of V̄ as the shift vector in combination with the
evaluation of dV̄ i(n)/dt given above is indeed sufficient
to solve the problems with the proper motion of PNS.

Although the shift vector field thus obtained is spa-
tially uniform, its derivatives with respect to r, θ and
φ are non-vanishing, since the coordinates are curvilin-
ear. The explicit form of the Ricci rotation coefficients
are rather involved (although calculations are straight-
forwardly) numerically in the code. This will be useful
indeed, since we are required to evaluate Ricci rotation
coefficients for numerically obtained metrices in truly GR
simulations.

3.2. Modifications to SR code

Although the GR Boltzmann equation, Eq. (1), has
a simple form, the consistent treatment of the advec-
tion and collision terms is complicated even for the flat
spacetime. In Nagakura et al. (2014), we surmounted the
difficulties by introducing two energy grids: Lagrangian
remapped grid (LRG) and Laboratory fixed grid (LFG).
We also devised for the SR code some other numeri-
cal techniques (e.g., a semi-implicit method for temporal
sweep). It is therefore desirable in the GR extension to
the current SR code that we should retain these features
as much as possible. In the following, we describe how
we achieved it.

We first consider the Boltzmann equation (1) in flat
spacetime. The tetrad bases, Eqs. (5), are reduced in
this case to

eα(F )
(0) = (1, 0, 0, 0),

eα(F )
(1) = (0, 1, 0, 0),

eα(F )
(2) =

(

0, 0,
1

r
, 0

)

,
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(3) =

(
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1

rsinθ

)

, (10)

where the subscripts ”F” hereafter implies quantities in
the flat spacetime. Then we can evaluate the ω variables
in Eq. (3) as:

ω(F )
(0) = 0,

ω(F )
(θ̄)

= −
sinθ̄

r
,

ω(F )
(φ̄)

= −
cotθ

r
sin3θ̄ sinφ̄. (11)

Substituting these results into Eq. (1) and using the de-
terminant of the metric for the fixed polar coordinates in
the flat spacetime (

√

−g(F ) = r2sinθ), we reproduce the

T : recovering time (=0.1ms)

(Nagakura et al. 2016)
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Time Evolution of Shock Radius

Neutrino-Driven Convection SASI (Standing Accretion Shock Instability)

Oscillation amplitude of the shock 
wave for 15Msol is large.

Oscillation amplitude of the shock 
wave for 11.2Msol is small.

Both 11.2Msol and 15Msol progenitors do not explode.



Fluid and Neutrinos in the Optically Thin Region
15Msol

Shock wave vigorously oscillate 
along the symmetric axis (SASI).  

Neutrinos propagate almost along 
the radial direction.



15Msol

Convection develop around  
the negative Ye gradient. 

Fluid and Neutrinos in the Optically Thick Region

Neutrinos are dragged by matter 
motions in the proto-neutron star.

PNS moves along the symmetric axis. Collision term is calculated with  
the full order of v/c
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3D Core-Collapse Simulations

- The central region at the baryon density ρ > 1014 g cm-3 (blue circle)                
is excised from the computational region.

- Courant condition become severe for the spherical coordinate grid for 3D.



Inner Boundary Condition for Boltzmann Equation

ang = 1 2 3 4
5
6
7
8
9
10

Radial 
Direction

ρ ~1014 [g/cm3]

Fermi Dirac Distribution 

Fi (Ei ) =
1

1+ exp[(Ei −µi ) / kT ]

Inner Boundary

Fermi Dirac Fermi Dirac

Isotropic Isotropic

1D 1D

&&



Research Plan for Exa-Scale Computing

1D spherically symmetric simulation
- EOS, weak reaction rate (2014 - )

2D axisymmetric simulation
- Non-rotational (2015 - 2016)/ rotational (2016 - 2017) models

3D simulation
- Non-rotational/rotational models without the central region (2016 - )

- Non-rotational/rotational models with the central region (2018 - )
PNS kick/spin

3D neutrino-driven convection and turbulent flow, sloshing/spiral mode of SASI

+ Gravitational wave and neutrino observations

⇒ GR

⇒ GR

⇒ GR

+ Validation and improvement of approximative neutrino transport method

2D neutrino-driven convection and turbulent flow, sloshing mode of SASI, PNS kick
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Summary

Core-Collapse Supernovae Simulations 
 for 11.2M◉ and 15M◉ using Boltzmann-Hydro Code 

from collapse (1D) to shock revival/stalled (2D)

- Both 11.2Msol and 15Msol progenitor models do not explode.

- Neutrino-driven convection and SASI appear for 11.2Msol and 15Msol, 
respectively, in the optically thin region

- Convection triggered by negative Ye gradient develop for both 11.2Msol and 
15Msol in the optically thick region.

- Neutrinos are dragged by matter in the optically thick region, while they 
propagate almost along the radial direction in the optically thin region.

- 3D simulation is the next target for the development of Boltzmann-Hydro code.


