重力崩壊型超新星のボルツマン方程式による
 ニュートリノ輻射流体計算

Presenter
岩上わかな
Wakana Iwakami

Member

長倉洋樹，大川博督，原田了，松古栄夫，住吉光介，山田章一
Hiroki Nagakura，Hirotada Okawa，Akira Harada，Hideo Matsufuru，Kosuke Sumiyoshi，Shoichi Yamada

TALK PLAN

1. Introduction
2. Boltzmann-Hydro Code
3. Results for 2D Core-Collapse Simulation
4. Toward 3D Core-Collapse Simulation
5. Summary

Core-Collapse Supernovae

Explosions of massive stars

How do they explode?

Explosion Scenario

Massive Star (>10M॰) $\quad \Rightarrow \quad$ Neutron $\operatorname{Star}\left(\sim 1.4 \mathrm{M}_{\bullet}\right)$

 Gravitational Energy ($\mathrm{E}_{\text {grav }} \sim 10^{53} \mathrm{erg}$)Neutrino + Photon + Kinetic Energy of Matter ($\left.\mathrm{E}_{\mathrm{v}} \sim 10^{53} \mathrm{erg}\right) \quad\left(\mathrm{E}_{\mathrm{rad}} \sim 10^{49} \mathrm{erg}\right) \quad\left(\mathrm{E}_{\mathrm{kin}} \sim 10^{51} \mathrm{erg}\right)$

Massive Star

Neutrino Heating Mechanism

Boltzmann Equation

Neutrino Transport

On-Shell Condition

$$
p^{\mu} p_{\mu}=-m_{v}^{2}
$$

$m_{v}:$ a neutrino rest mass

$$
f=f\left(x^{\mu}, p^{i}\right) \quad(\mu=0,1,2,3 ; \quad i=1,2,3)
$$

$$
p^{\mu} \frac{\partial f}{}+\frac{d p^{i}}{\partial f}=\left(\frac{\delta f}{\text { Geodesic Equation }}\right.
$$

$$
\frac{d p^{\alpha}}{d \tau}+\Gamma_{\beta \gamma}^{\alpha} p^{\beta} p^{\gamma}=0
$$

Ricci Rotation Coefficient

$$
\Gamma_{\beta \gamma}^{\alpha}=\frac{\partial x^{\prime \alpha}}{\partial x^{a}} \frac{\partial x^{b}}{\partial x^{\prime \beta}}\left[\frac{\partial}{\partial x^{b}}\left(\frac{\partial x^{a}}{\partial x^{\prime c}}\right)+\left\{\begin{array}{c}
a \\
b c
\end{array}\right\} \frac{\partial x^{c}}{\partial x^{\prime \gamma}}\right]
$$

Affine Connection

$$
\left\{\begin{array}{c}
c \\
a b
\end{array}\right\}=\frac{1}{2} g^{d c}\left(\frac{\partial g_{a d}}{\partial x^{b}}+\frac{\partial g_{b d}}{\partial x^{a}}-\frac{\partial g_{a b}}{\partial x^{d}}\right)
$$

$g_{\mu \nu}:$ metric tensor

Collision Term

Weak Interaction

$$
\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision (s) }}=\left[\frac{\delta f}{\delta \tau}\right]_{\text {emis-abs (s) }}+\left[\frac{\delta f}{\delta \tau}\right]_{\text {scat (s) }}+\left[\frac{\delta f}{\delta \tau}\right]_{\text {pair (s) }}
$$

Emission/Absorption
Electron Capture
$e^{-}+p \longleftrightarrow v_{e}+n$ [ecp]
Anti-Electron Capture
$e^{+}+n \longleftrightarrow \bar{v}_{e}+p$ [aecp]
Electron Capture on nuclei
$e^{-}+A \longleftrightarrow v_{e}+A^{\prime} \quad$ [eca]

Scattering
Neutrino-Nucleon scattering
$\nu+N \longleftrightarrow v+N[\mathrm{nsc}]$
Neutrino-Nuclei scattering

$$
v+A \longleftrightarrow v+A[\mathrm{csc}]
$$

Pair Process

Electron-positron pair process

$$
e^{-}+e^{+} \longleftrightarrow v_{i}+\bar{v}_{i} \quad \text { [pap] }
$$

Nucleon-nucleon bremsstrahlung
$N+N \longleftrightarrow N+N+\nu_{i}+\bar{\nu}_{i}[\mathrm{nbr}]$
Neutrino-Electron scattering

$$
v+e \longleftrightarrow v+e[\mathrm{esc}]
$$

$$
\Gamma_{s} \equiv \int\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision (s) }} d^{3} \mathbf{p} \quad \Gamma \equiv \Gamma_{v_{e}}-\Gamma_{\bar{v}_{e}}
$$

Neutrino Energy Density ($\mu=0$) Radiation Pressure ($\mu=1,2,3$)

$$
G_{s}^{\mu} \equiv \int p_{s}^{u}\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision (s) }} d^{3} \mathbf{p} \quad G^{\mu} \equiv \sum_{s} G_{s}^{\mu}
$$

Euler Equations

Hydrodynamics

Baryon mass conservation: $\quad\left(\rho u^{\mu}\right)_{; \mu}=0$

Energy and momentum conservation:

$$
\left(T^{\mu v}\right)_{; v}=-G^{\mu} \quad T^{\mu v} \equiv[\rho(1+e)+P] u^{u} u^{v}-P g^{\mu v}
$$

Lepton number conservation: $\left(n_{e} u^{u}\right)_{; \mu}=-\Gamma$
EOS table ($\rho, \mathrm{Ye}, \mathrm{T}$)
Gravitation:

$$
\mathbf{G}^{\mu \nu}=8 \pi T^{\mu \nu} \quad \Rightarrow \Delta \phi=4 \pi \rho \quad \text { (Newton Approx.) }
$$

ρ : barion density $\quad u$: velocity $\quad T^{\mu \nu}$: energy-momentum tensor P : matter pressure e : specific internal energy density $\mathrm{g}_{\mu \nu}$: metric tensor n_{e} : electron number density $\mathbf{G}^{\mu \nu}$: Einstein Tensor G^{0} : neutrino radiation energy, G^{i} : neutrino radiation pressure, $\Gamma \equiv \Gamma_{v_{e}}-\Gamma_{\bar{v}_{e}}$: deleptonization rate Y_{e} : electron fraction (\equiv electron number / barion number)

- Current Status of supernova simulations -

Non-Spherically Symmetric Explosion

Cassiopeia A

. Crab Nebula

- Current Status of supernova simulations -

Various Approximations for Multi-D Neutrino Transfer

\checkmark Ray-by-Ray Approach (MPA, Oak Ridge, Kotake-Takiwaki-Suwa)
Neutrino-Advection is essentially considered under spherical symmetry.
\checkmark Moment method
(MPA, Kyoto, Caltech, Basel (Kuroda))
Multiplied by $\cos \theta \mathrm{v}$ and integrated with the neutrino angular directions, the time-evolution equations of the energy density and the energy flux can be obtained.
\checkmark Isotropic Diffusion Source Approximation (IDSA) (Basel, Kotake-Takiwaki-Suwa)

Neutrinos are decomposed into trapped and streaming parts.

\checkmark Multi-Group Flux-Limited-Diffusion (MGFLD) (Oak Ridge, Princeton, Caltech)
The energy flux can be determined to automatically switch between optically thick limit and thin limit with the transport cross section.

- Current Status of supernova simulations -

Dimensionality
(for Hydro)
~ 10 years ago
~ current status
Our Work

Full GR

Gravity

Neutrino
Transport

Most advanced Weak interaction

EOS
Weak Interactions
(by Nagakura)

HPCl Strätegic Prograna تrield 5

Core-Collapse Supernovae Simulations for 11.2 M . and 15 M o using Boltzmann-Hydro Code

from collapse (1D) to shock revival/stalled (2D)
$N_{r} \times N_{\theta} \times N_{\varphi} \times N_{\varepsilon} \times N_{\theta v} \times N_{\varphi v}=384 \times 128 \times 1 \times 20 \times 10 \times 6$

Using the most sophisticated neutrino transport code, we confirm whether explosion occur or not.

TALK PLAN

1. Introduction

2. Boltzmann-Hydro Code
3. Results for 2D Core-Collapse Simulation
4. Toward 3D Core-Collapse Simulation

Boltzmann Equation

(Sumiyoshi and Yamada 2012)

$$
\begin{gathered}
f=f\left(t, r, \theta, \phi, \varepsilon_{v}, \mu_{v}, \phi_{v}\right) \quad d s^{2}=-d t^{2}+d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
\frac{\partial f}{\partial t}+\cos \theta_{v} \frac{\partial f}{\partial r}+\frac{\sin \theta_{v} \cos \theta_{v}}{r} \frac{\partial f}{\partial \theta}+\frac{\sin \theta_{v} \sin \phi_{v}}{r \sin \theta} \frac{\partial f}{\partial \phi} \\
\\
-\frac{\sin \theta_{v}}{r} \frac{\partial f}{\partial \theta_{v}}-\frac{\cos \theta}{\sin \theta} \frac{\sin \theta_{v} \sin \phi_{v}}{r} \frac{\partial f}{\partial \phi_{v}}=\left(\frac{\delta f}{\delta t}\right)_{\text {collision }}
\end{gathered}
$$

Spherical Coordinate System

Two Energy Grids Approach for Momentum Space

(Nagakura et al. 2014)

Collision term is calculated in the rest frame using Lagrangian Remapped Grid (LRG) Advection term is calculated in the laboratory frame using Laboratory Fixed Grid (LFG)

$$
\left(\frac{\delta f}{\delta t}\right)_{\text {collision }}^{\text {laboratory }}=\frac{d \lambda}{d t}\left(\frac{\delta f}{\delta \lambda}\right)_{\text {collision }}=\frac{d \lambda}{d t} \frac{d \tau}{d \lambda}\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision }}^{\text {restframe }}=\frac{\varepsilon_{v}^{\mathrm{lb}}}{\varepsilon_{v}^{\mathrm{rf}}}\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision }}^{\text {restrame }}=\underset{\substack{\text { Doppler factor }}}{D^{\mathrm{lb}}\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision }}^{\text {restrame }}}
$$

Boltzmann Equation

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+\frac{\mu_{v}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} f\right)+\frac{\sqrt{1-\mu_{v}^{2}} \cos \phi_{v}}{r \sin \theta} \frac{\partial}{\partial \theta}(f \sin \theta)+\frac{\sqrt{1-\mu_{v}^{2}} \sin \phi_{v}}{r \sin \theta} \frac{\partial f}{\partial \phi} \\
& +\frac{1}{r} \frac{\partial}{\partial \mu_{v}}\left(f\left(1-\mu_{\mu}^{2}\right)\right)-\frac{\sqrt{1-\mu_{\mu}^{2}}}{r} \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \phi_{v}}\left(f \sin \phi_{v}\right)=D^{\mathrm{lb}}\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision }}^{\text {restrame }}
\end{aligned}
$$

Two Grids Approach for Momentum Space

(Nagakura et al. 2014)

Right-hand side of Boltzmann equation (collision term) is calculated by using this frame
the fully-implicit method is impossible

Left-hand side of Boltzmann equation (advection term) is calculated with this frame

Moving Mesh

(Nagakura et al. 2016)
Proto-neutron star moves by non-spherically symmetric distribution of the matter around it.

Boltzmann-Hydro equation in the $3+1$ formalism of general relativity (GR)

α : lapse function $\quad \beta_{i}$: shift vector
n : unit vector normal to the spatial hyper-surface with $\mathrm{t}=\mathrm{constant}$

Metric of Moving Mesh

(Nagakura et al. 2016)

$$
\begin{gathered}
d s^{2}=\left(-\alpha^{2}+\beta^{k} \beta_{k}\right) d t^{2}+2 \beta_{i} d t d x^{i}+\gamma_{i j} d x^{i} d x^{j} \\
\alpha=1 \quad \beta^{i}=\bar{V}^{i} \quad \gamma_{r r}=1 \quad \gamma_{\theta \theta}=r^{2} \quad \gamma_{\phi \phi}=r^{2} \sin \theta^{2} .
\end{gathered}
$$

α : lapse function $\quad \beta_{i}$: shift vector
$r_{\text {ij }}$: spatial 3-metric
How to determine Vi

$$
\begin{aligned}
& V^{i(n)}=\frac{P^{i(n)}}{V^{(n)}}, \quad \quad \begin{array}{l}
\bar{d}^{i(n+1)}=\bar{V}^{i(n)}+\frac{d \bar{V}^{i(n)}}{d V^{(n)}} \Delta t^{(n)}, \\
\end{array} \\
& P^{i(n)} \equiv \int \rho^{(n)} v_{o}^{i(n+1)} d V_{\mathrm{PNS}}, \quad \frac{d t}{d t}=\frac{d V^{i(n)}}{d t}+C^{(n)}+D^{(n)}, \\
& M^{(n)} \equiv \int \rho^{(n)} d V_{\mathrm{PNS}}, \quad C^{(n)} \equiv\left(V^{i(n)}-\bar{V}^{i(n)}\right) / T, \\
& D^{(n)} \equiv X_{m}^{i(n)} / T^{2} \text {, }
\end{aligned}
$$

P^{i} : momentum of PNS $\quad \mathrm{M}^{i}$: mass of PNS $\quad \mathrm{V}^{i}$: kick velocity of PNS
$X_{m^{i}}$: deviation of origin from PNS $\mathrm{vo}^{i}: 3$-velocity measured in the O-frame dVPNs : angle-averaged $\rho>10^{13} \mathrm{~g} \mathrm{~cm}^{-1} \quad \mathrm{~T}$: recovering time ($=0.1 \mathrm{~ms}$)

TALK PLAN

1. Introduction

2. Boltzmann-Hydro Code
3. Results for 2D Core-Collapse Simulation
4. Toward 3D Core-Collapse Simulation
5. Summary

Time Evolution of Shock Radius

Both 11.2 Msol and 15 Msol progenitors do not explode.

Neutrino-Driven Convection
Oscillation amplitude of the shock wave for 11.2 Msol is small.

Oscillation amplitude of the shock wave for 15 Msol is large.

Fluid and Neutrinos in the Optically Thin Region

Shock wave vigorously oscillate along the symmetric axis (SASI).

15 Msol

Neutrinos propagate almost along the radial direction.

Fluid and Neutrinos in the Optically Thick Region

15Msol

Convection develop around the negative Ye gradient.

PNS moves along the symmetric axis.

Neutrinos are dragged by matter motions in the proto-neutron star.

Collision term is calculated with the full order of v / c

TALK PLAN

1. Introduction

2. Boltzmann-Hydro Code
3. Results for 2D Core-Collapse Simulation
4. Toward 3D Core-Collapse Simulation
5. Summary

- Towards Exa-Scale Computing -

Dimensionality
Neutrino (for Hydro) 3D

Full Boltzmann Transport

$-$ interact on sets

Full GR
Most advanced Weak interaction EOS
Weak Interactions

3D Core-Collapse Simulations

- Courant condition become severe for the spherical coordinate grid for 3D.
- The central region at the baryon density $\rho>10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ (blue circle) is excised from the computational region.

Inner Boundary Condition for Boltzmann Equation

$$
\text { ang }=1234
$$

Research Plan for Exa-Scale Computing

ID spherically symmetric simulation $\Rightarrow G R$

- EOS, weak reaction rate (2014-)

2D axisymmetric simulation $\quad \Rightarrow G R$

- Non-rotational (2015-2016)/ rotational (2016-2017) models

2D neutrino-driven convection and turbulent flow, sloshing mode of SASI, PNS kick
3D simulation $\Rightarrow G R$

- Non-rotational/rotational models without the central region (2016-)

3D neutrino-driven convection and turbulent flow, sloshing/spiral mode of SASI

- Non-rotational/rotational models with the central region (2018-)

PNS kick/spin

+ Validation and improvement of approximative neutrino transport method
+ Gravitational wave and neutrino observations

TALK PLAN

1. Introduction

2. Boltzmann-Hydro Code
3. Results for 2D Core-Collapse Simulation
4. Toward 3D Core-Collapse Simulation
5. Summary

Summary

Core-Collapse Supernovae Simulations for 11.2 M o and 15 Mo using Boltzmann-Hydro Code from collapse (1D) to shock revival/stalled (2D)

- Both 11.2Msol and 15Msol progenitor models do not explode.
- Neutrino-driven convection and SASI appear for 11.2 Msol and 15 Msol , respectively, in the optically thin region
- Convection triggered by negative Ye gradient develop for both 11.2Msol and 15 Msol in the optically thick region.
- Neutrinos are dragged by matter in the optically thick region, while they propagate almost along the radial direction in the optically thin region.
- 3D simulation is the next target for the development of Boltzmann-Hydro code.

