素粒子・原子核・宇宙「京からポスト京に向けて」シンポジウム

サブ課題B原子核セッション 「量子多体計算に基づく原子核構造・反応研究」

軽い核の第一原理計算と核力

阿部 喬 (東大理)

ワテラスコモンホール 2016年3月30-31日

実施計画

実施計画

"Ab initio" in low-energy nuclear structure physics

 Solve the non-relativistic many-body Schroedinger eq. and obtain the eigenvalues and eigenvectors.

$$H|\Psi\rangle = E|\Psi\rangle$$

$$H = T + V_{\rm NN} + V_{\rm 3N} + \dots + V_{\rm Coulomb}$$

- Ab initio: All nucleons are active, and Hamiltonian consists of realistic NN (+ 3N + ...) potentials.
- Two main sources of uncertainties:
 - Nuclear forces (interactions btw/among nucleons)
 In principle, they should be obtained (directly) by QCD.
 - Many-body methods

CI: Finite basis space (choice of basis function and truncation), we have to extrapolate to infinite basis dimensions

Shell model (Configuration Interaction, CI)

• Eigenvalue problem of large sparse Hamiltonian matirx

$$\begin{array}{c} H|\Psi\rangle = E|\Psi\rangle \\ &\stackrel{H_{11}}{\xrightarrow{H_{12}}H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{12}}H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{12}}H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{12}}H_{22}}H_{23} \\ &\stackrel{H_{24}}{\xrightarrow{H_{24}}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{22}}H_{23}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{23}}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{14}}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{11}}}H_{24} \\ &\stackrel{H_{11}}{\xrightarrow{H_{14}}}H_{24} \\$$

M-scheme dimension in N_{shell} truncation

Monte Carlo shell model (MCSM)

Importance truncation

Standard shell model

Review: T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001)

Energies wrt # of basis & energy variance

Energies of the Light Nuclei

T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utsuno and J. P. Vary, Phys. Rev. C 86, 054301 (2012) 9

Strong scaling (eigen functions & eigenvalues)

• Wave function (100 CG iterations @ 100th basis)

Scales up to ~ 60,000 cores @ N_{shell} = 7 (⁴He) on K computer

Strong scaling (energy variances)

Energy variance (1st – 100th bases)

Scales over ~ 240,000 cores @ N_{shell} = 7 (⁴He) on K computer

IR & UV-cutoff extrapolation

$$E(\lambda, \Lambda) = E(\lambda = 0, \Lambda = \infty) + a \exp(-b/\lambda) + c \exp(-\Lambda^2/d^2)$$

Comparison of MCSM results w/ experiments

MCSM results are obtained by traditional extrapolation w/ optimum harmonic oscillator energies. Coulomb interaction is included perturbatively.

MCSM results show good agreements w/ experimental data up to ¹²C, slightly overbound for ¹⁶O, and clearly overbound for ²⁰Ne.

実施計画

Density distribution from ab initio calc.

- Green's function Monte Carlo (GFMC)
 - "Intrinsic" density is constructed by aligning the moment of inertia among samples

R. B. Wiringa, S. C. Pieper, J. Carlson, & V. R. Pandharipande, Phys. Rev. C62, 014001 (2000)

- No-core full configuration (NCFC)

 Translationally-invariant density is obtained by deconvoluting the intrinsic & CM w.f.
 C. Cockrell J. P. Vary & P. Maris, Phys. Rev. C86, 034325 (2012)
- Lattice EFT
 - Triangle structure in carbon-12
 E. Epelbaum, H. Krebs, T. A. Lahde,
 D. Lee, & U.-G. Meissner,
 Phys. Rev. Lett. 109, 252501 (2012)

Density distribution in MCSM

N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, T. Otsuka₁₆ Progress in Theoretical and Experimental Physics, 01A205 (2012)

Density distribution of Be isotopes

Preliminary 吉田亨 (CNS)

2-α-cluster structure

. 0.040

0.032

0.024

0.016

0.008

0.000

-0.008

-0.016

-0.024

-0.032

-0.040

0.040

0.032

0.024

0.016

0.008

0.000

-0.016

-0.024

-0.032

-0.040

0.040

0.032

0.024

0.016

0.008

0.000

-0.008

-0.016

-0.024

-0.032

-0.040

0

2

2

4

0

0.00

-4

-2

0

2

4

4

0.00

-4

4

-4

-2

0

2

-2

0

2

4

Molecular-orbital states

実施計画

Nuclear force from chiral EFT

E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006). R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).

- Current standard input potential: xEFT N3LO NN + N2LO 3N ۲
 - Renormalization technique: SRG, V_{low k} \checkmark
 - 3N interaction: Full, NO2B approx., ... \checkmark
 - Other input potentials: NNLO_{opt}, NNLO_{sat}, JISP16 NN, AV18 NN + IL7 3N, ... \checkmark

K. Hebeler, H. Krebs, E. Epelbaum, J. Golak, & R. Skibinski, arXiv:1502.02977

Effective 2N force from 3N force

⁴He O⁺ g.s. energy calculated by FCI & no-core MCSM w/ χEFT N3LO NN (+ "N2LO 3N") potential

Effective 2N potential from initial 3N potential in momentum space

Energies with 3NF in the different cutoff scales are consistent in a sufficiently large basis space

モンテカルロ殻模型による第一原理計算のまとめと今後の展望

- <u>京より前</u>
 - A=4-12(⁴He-¹²C) ← p殻核の全般
 - 模型空間:4主殻まで
 - 二体力のみ
- <u>京で完了したこと</u>
 - A = 20 (²⁰Ne)まで ← sd 殻核の始め
 - 模型空間:7主殻(当初予定は6主殻)まで → 模型空間無限大への外挿が可能
 - ベリリウム同位体のクラスター構造の可視化(分子軌道状態も)
 - 有効二体化した三体力のテスト → 三体力の部分的な導入
- 引き続き京でやっていること
 - ¹²CのHoyle状態
 - 三体力の本格的な導入
- ・ <u>ポスト京で</u>
 - A~40(sd殻核)、模型空間:8主殻
 - 炭素同位体(Hoyleを含む)のクラスター構造の解析
 - 三体力の本格的な導入 → χEFTや格子QCDによる核力
 - ▶ 軽・中重核の構造の核力に基づく第一原理計算による解明

Collaborators

- 東京大学
 - 大塚孝治(物理、CNS)
 - 清水則孝 (CNS)
 - 吉田亨 (CNS)
 - 宮城宇志(物理)
 - 吉田聡太(物理)
- 原子力機構
 - 宇都野穣
- Iowa State U
 - James P. Vary
 - Pieter Maris
- 九州工業大学
 - 岡本良治
- 大阪大学RCNP
 - 河野通郎