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Introduction

Why Tensor renormalization group
instead of Monte Carlo method?



Lattice QCD by IVIC S|mulat|ons
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play crucial role in Hadron spectrum and T#0 QCD



Limitations and problems in MC

m Light quark mass simulation Solved!
new algorithm & improvement of action

m Critical slowing down
continuum limit = critical point
m Sign problem (complex action problem )
MC cannot be applied if Boltzmann weight is complex number

1
— det D[Ule9¢lUl ¢ C



Examples facing the sign problem

QCD with finite quark density
m EOS in core of compact stars

Lattice chiral gauge theory
m Simulation of weak interaction (SM)

Lattice SUSY

m not sure it exists but may be interesting
m Dynamics of SUSY breaking

O term

m Strong CP problem: Dynamics in the presence of B-term is
iImportant



Approaches within MC framework

Taylor expansion

Can capture phase transition (non-analytic phenomena)?
Phase-reweighting

harder for larger volume

Pure imaginary parameter (imaginary p, 6)
applicable range of analytic continuation

Complex Langevin

Convergence ?

Lefschetz thimble
Difficult! (at least for me)
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Tensor Renormalization Group
(TRG)

Algorithm to compute partition function
of lattice model approximately w/o
relying on probability

for classical statistical system or quantum
system in path-integral representation

m Good : No sigh problem

m Bad : Higher dimensional system is still hard
see later



TRG for 2D Ising model



Procedures of TRG

@ Rewrite Z in tensor network representation

J =

Spins

Z Tensor

6_BH[S] = Z ---Tijlemnio'--  Analytic
{s} / z‘,j,k,l,X "exact

will be explained soon

New degrees of freedom

site:Tensor T
bond:index i,/ ,k,L/,...




Procedures of TRG

@ Rewrite Z in tensor network representation
@ Coarse graining Tensor

Blocking of Tensor (like spin-blocking)

4 T N
» 7(1)
\_ /

e extracting important information numerically
* selection of information introduces approximation



Procedures of TRG

@ Rewrite Z in tensor network representation

@ Coarse graining Tensor

(3 Repeat the coarse graining and then reduce the
number of tensors, finally compute Z by contraction

71)
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Procedures of TRG

@ Rewrite Z in tensor network representation

@ Coarse graining Tensor

(3 Repeat the coarse graining and then reduce the

number of tensors, finally compute Z by contraction
7 Z Ti(r’n')’ for Periodic BC
Jt]
i, N J
71) ’
7(2)

) » —t—t




@ Tensor network rep.

. . — —BH[s] _ N .
DlreCl'IOn Z = %6 Z “'T’ijlenzo---

4)

i,3.k,L,...
Expand Boltzmann weight as in High-T expansion

ldentify integer, which appears in the expansion, as
new d.o.f. = index of tensor

T T
Integrate out old d.o.f. j
(spin variable s) T T
2 7
Get tensor network rep. ! ,
T T

Basic procedure is common to fermion/gauge system




@ Tensor network rep.

= Zexp( Z 5sx8y> Z H eXp 58 Sy
{s}

<z,y> {s} <wz,y>

nearest neighbor pair

- |




@ Tensor network rep.

Z = Zexp( Z Bsx3y> :Z H exp(354Sy)

{s} <T,y> {s} <z,y>

1
= (cosh 3)?V Z H Z (828, tanh 3)tey V = # of lattice sites

{s} <Z,y>iz4=0

-

exp(sysy) = cosh(Bszsy) + sinh(8szsy) s, = +1
= cosh 8+ s;s,sinh 3
= cosh (1 + s;s, tanh )

1
= coshf Z (528, tanh 3)"=v

- S /

New d.o.f.




@ Tensor network rep.

Zexp( Z Bsx3y> = Z H exp(354Sy)

{s} <z, y> {s} <z,y>

(cosh )%V Z H Z (845, tanh 3)"=v

{s} <Z,y>iz4=0

(cosh 3)?V Z Z H (sz+/tanh 3 - s,4/tanh 3)"=v

{i} {s} <zy>




(D) Tensor network rep.

= Zexp( Z ﬁsx8y> :Z H eXp(BSxSy)

{s} <T,y> {s} <z,y>

= (coshﬁ)2vz H Z (828y tanh )%

{5} <T,Y>iyy=0

= (cosh 5)2‘/ Z Z H (sz+/tanh 3 - s,4/tanh B)iw

{it {s} <z.y>

tit {s} =




@ Tensor network rep.

<z,y>

{s}

(cosh 3)2Y Z H

{s} <z,y>

(cosh 6)2‘/ Z Z

Zexp< Z 6sx3y> = Z H exp(szsy)

{s} <z,y>

1
Z (845, tanh 3)"=v

iy =0

—[ (sz+/tanh 3 - s,4/tanh 3)"=v

(i} {s} <zy>

(cosh ﬁ)2V Z Z 1_

{it {s} =

(sz+/tanh 6)7@ (sz+/tanh B)i“ (sz+/tanh 5)imw (Sq \/m)im

(cosh 8)2V Z Z r

{it {s} =

'< \V tanh B)Za:y‘i‘za:z‘f'iww—kzwv S;$y+7;wz+imw+7;a:v

Spin sum can

(cosh 5)2\/ Z H( /tanh B)ieytiecstizwtizy Z stovtiosHiawtizy be done

{i} =

sz==x1

(cosh B)2Y ) " T [[(v/tanh g)evties Hiewtier 25 (mod(igy + ias + ipw + iv, 2))

{iy =

loylozlzwlizy New d.o.f.:index of tensor



Z =2"(cosh 3)?Y

@ Tensor network rep.

2

1,9,k L, m,n,o,..

T Tijlemnio T

Tijre = (v/tanh B) 975+ §(mod (i + j + k + 1), 2)

Tooo0o
To100
T1000
| T1100

Tooo1
To101
Tr001
Th101

Too10
To110
Tho10
Th110

Tho11

To111
T1011

Ti111

1
0
0

| tanh

0 0
tanh 3 tanh
tanh 8 tanh (8

0 0

tanh 3
0
0
(tanh 3)* |

Contents of tensor depend on model



@ Tensor network rep.

Z = QV(COSh 6)2‘/ Z cee Tijlemnio T

1,9,k L, m,n,o,..

Key points

translahon%I invariance ‘T lT ‘T

all tensors are common

4 )

local interaction

( t neighbor) T T T
neares ir;elg or j T r

\network (nearest neighbor)J




@ Tensor network rep.

Y zglemnzo T
klmno

So far, we have just rewritten Z
Next step is to carry out the summation
But, naive approach costs oc 2%V

One has to reduce the cost and introduce approximation

but wants to keep an efficiency by summing important
partinZ




@ Tensor network rep.

Y zglemnzo T
klmno

So far, we have just rewritten Z
Next step is to carry out the summation
But, naive approach costs oc 2%V

One has to reduce the cost and introduce approximation

but wants to keep an efficiency by summing important
partinZ

Coarse graining (renormalization, blocking)




@Coarse graining

Direction

assuming translational invariance & local interaction

Decompose tensor & extract important part =
compression of information & emergence of new

d.o.f.

Making new tensor by combining the compact
tensors = contracting old d.o.f.

By repeating the decomposition and contraction, #
tensors can be reduced

After decreasing # of tensors, Z can be computed

easily = @




@Coarse graining

Decomposition oftensor
J 5.]7
S, 1
k—{iz —) g Tz'jkl — Z(Sl)jkm(SS)lim

l m



@Coarse graining

Decomposmon of tensor

S1 ]

e

+ ) k /Tn_ Tijkl:%:(sl)jkm(SS)lim

Singular value decomposition (SVD) W, v : orthogonal matrix

ab — E uamam mb

o1 > 09 > : singular value

approx.

Tijkl — M(kj),(zl Zu(kj) m\/o-m \/Umv (zl@ Sl jk:m S3 lzm

[Dcut—truncated matrix is the best approximation among all rank-D

matrices J

cut

Tensor (matrix) is approximated by low-rank tensor = information compression



@Coarse graining

cut

Decomposition . s |7 D
et ikl = Z(Sl)jkm(SS)lz’m

m'

. ‘T. - 1B =1
1 .

~ 7154 Deut

T T T S3.59
% 5451

T T T S3.55 S35
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@Coarse graining

Making new tensor by contraction

all
Z (51)i1a(52) jiv (S3)kje (Sa)ika = Loy

NN/
L 1 integrate out old d.o.f. ] Renormalization!

C b C b
0”” j ””0
S 3 So| . —
k 0 = T .,
S4 Sl * .
0" l .’0



by H. Kawauchi (Kanazawa U.,D1)

race of this ten



Hierarchy of singular value

2D Ising model
10 D_.=32
' ' T=1.70 L=32 cut
1k T=1.70 L=1024  ===--=- |
T=2.27 [=32 _
LT T=2.07 L=1024  ------- T. = 2/[In(1+ \/5)]
10 r = T T=2.70 L=32 7
b T T=2.70 L=1024  ------- = 2.2069...
0% T, e .
Q‘_ 10_3 i '-----::-,““_‘ ______________ |
& | Entanglement entropy
10 - ~ ~
.\ S =— 0, ln o;
10 B ‘l‘ "’\‘ 7 -
temmns - (/
6 | : g ] . :
10 -. normalized singular value
10-7 ] ] i 1Ly 1
0 20 40 60 80 100

e Off criticality: good hierarchy (small S)

* Near criticality: hierarchy gets worse (large ) like critical slowing

down in MC

Tensor network renormalization (TNR) can cure the situation



Specific heat

cut

-dependence of Specific heat

TC=2.269... 1 i (TQZ?IHZ)

numerical derivative

1=128

For larger D

cut’

transition T'is closer to the exact 7




Specific heat

Large volume

D =32
7. = 2/[n(l+v?2)]
= 2.269...

one-day work by using this MacBook Air

Cost oc log(Lattice size) x (D_,)° % [# temperature mesh]




Status of numerical study of TRG

m 2D system
m Spin:lsing model , X-Y model , O(3)

m Scalar:$* theory

m Gauge + Fermion:QED,

m QED,+6:

m Finite density: Gross-Neveu model
m Higher dimensional system

m Higher order TRG(HOTRG): new coarse graining method
applicable for any dimensional system

m 3D Ising : , 4D Ising:
m Specialized to Gauge theory
m Decorated tensor network renormalization:



Historical background

m Density matrix renormalization group (DMRG)
m Variational method to obtain ground state in 1D quantum sys.

m By selecting GOOD basis using SVD, one can drastically reduce
the # of data O(2N)—>O(N), N:# sites (information compression)

m Target: Wave function (in Tensor network representation)
m Before this appears, limited to N=30. But DMRG enables N=100

2N elements

W> — Z ¢81,82 ...... sN|31>®|32>®“'®‘3N>

‘ ‘ l l l tr [A7' 5% - - AV A® 1 d x d matrix
Matrix product 4 S1 82 SN )

\81 So i state (MPS) Céu—i— ........ _LlAjN

2Nd? elements

\Tensor network rep. of wave function/




Historical background

m Density matrix renormalization group (DMRG)
m Variational method to obtain ground state in 1D quantum sys.

m By selecting GOOD basis using SVD, one can drastically reduce
the # of data O(2N)—>O(N), N:# sites (information compression)

m Target: Wave function (in Tensor network representation)
m Before this appears, limited to N=30. But DMRG enables N=100

m Tensor renormalization group (TRG)
m Target:Partition function of classical Stat. system

m Express partition function in terms of tensor network rep.,
compress tensor by using SVD and coarse graining tensor

m Very powerful in 2D system. Comparable to MC or more



MC

TRG

Boltzmann weight is
interpreted as probability

Tensor network rep. of partition
function (no probability
interpretation)

Importance sampling

Compression of tensor by SVD

Statistical errors

Systematic errors

Sign problem may appear

No sign problem
"." no probability

Critical slowing down

Efficiency of compression gets
worse around criticality




Numerical aspect of TRG and Task

m Main computation (For HOTRG, n-dim system)
m Decomposition = SVD(EVD):0O(D_,°)
m Contraction = matrix-matrix product:O(D_,*"1) HOt spot

m Memory
m # elements of tensor: O(D_,*")
m internal d.o.f. = more memory




Numerical aspect of TRG and Task

m Main computation (For HOTRG, n-dim system)
m Decomposition = SVD(EVD):0O(D_,°)
m Contraction = matrix-matrix product:O(D_,*"1) HOt spot

m Memory

m # elements of tensor:O(D_.2")

cut

m internal d.o.f. = more memory

¥

m matrix-matrix product:Level 3 BLAS > SVD
m Better coarse graining with small D_, (highly compression)?



Improvement of Coarse graining

m Tensor Entanglement Filtering Renormalization

m Removing short range correlation (partially)
m works in off-criticality but not near criticality

m Second TRG
m Optimization including environment (TRG: locally optimal)
m works in off-criticality but not near criticality

m Tensor Network Renormalization (TNR)

m First remove short correlation (entanglement) by using
disentangler, and then coarse graining is performed

m Even around criticality, sustainable coarse graining is realized



Tensor Network Renormalization

Evenbly & Vidal 2014
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Tensor Network Renormalization

Evenbly & Vidal 2014
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Tensor Network Renormalization

Evenbly & Vidal 2014
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Tensor Network Renormalization

————— > RG flow at criticality

v

Spectrum of A (5)

107 102100 102102 10

Hierarchy for TNR is robust even after several iterations:
TNR is a sustainable coarse graining



Why TNR works  cvensiy a vidai 2014

TRG with Corner Double Line tensor

short-correlation represented by CDL remains

A role of disentangler

short-correlation can be removed




Summary

No sign problem in TRG
Key of TRG: information compression using SVD
Inefficient around criticality

But, Tensor Network Renormalization (TNR) can
solve the problem. An extension to higher
dimensional system is still missing

In any case, TRG is very powerful in low (2D)
dimensional system



Future prospects
m Long way to 4D QCD (+u&9)

m Higher dimensional system (4D system)
m Cost:O(D_,.**), Memory:O(D_,®)
m efficient parallelization?
m TNR?

m Non-Abelian gauge theory

m Character expansion = Tensor network rep. is OK but
internal d.o.f. is huge

m Low dim. system suffering from the sign problem ?
m 2D CP(N-1) + 6: Strong CP problem
m Lattice SUSY, Lattice chiral gauge theory



Application to finite fermion density
system: Gross-Neveu model



Continuum

a — 8V’YI/

2D Gross-Neveu model

2

= (@ +m)y — = [(Mb) + (ivsy)?]

WY =

(@51, 1@2) 2 components in spinor space



2D Gross-Neveu model

2

Continuum = (@ +m)p — = [(Wﬁ) + (Yiysep)?]

N =1

Jd=0,v, Y = (@Zl, @Zg) 2 components in spinor space

@ﬂical potential ]
AT+ AP — APA!
v—v B wn)

Lattice J 5 Al/Pep, =+ (ei”é”’l%ia

Wilson fermions v=1: temperature direction

[\D

1 o
A Z eu(s 1¢n ’Yy)wn—I—D + e M5u,1¢n(1 + ’Yu)wn—ﬁ}
=1

2

+ (m+ 2Pt — T [(an)? + (nirsiin)’]



2D Gross-Neveu model

vy =1 LT v = 2
€ “¢n(1 + /yl)/(pn—i
—Q
n—+ 2 B
l e V(1 —72)Y, 5
A N @
5 n—1 n n+1 n ~
- o 4
| e (1 —71)Y,, 41 n—2
1l:temperature

2
1 _ L
= =5 [ Gl = W)t + € P14 7))
r=1

Hopping term : Energy term in Ising model

2

+ (m + 2)?7an71 B % [(&nwn)Q T (&ni’%?ﬂn)ﬂ

mass term and interaction term : magnetic term in Ising model




Grassmann TRG

m Formulation:
Gu et al., 2010, Gu 2011

m 2D relativistic system
Shimizu & Kuramashi 2013

For fermion system, procedure is similar to that of
Ising model. But, one has to make tensor for the
model by oneself.



How to make tensor

1) Expand BW, and then new d.o.f.(bosonic) appears

SR | S TR

[ Hopping term forﬁ




How to make tensor

1) Expand BW, and then new d.o.f.(bosonic) appears

_1 -

n - : 1 0
_ B Y1 =03 = ( 0 —1 )
— H . e eXp e_uwn+i,1¢n,1i| . e

n




How to make tensor

1) Expand BW, and then new d.o.f.(bosonic) appears

_ 1, -

p— H . e eXp 6_M¢n+i 1¢n,1i| . e

_ H Z( n+1,1¢n,1)t”’1---

nlo

Finite expansion
due to Grassmann

the same goes for

— tn,l
_ I et . .
- Z H (e wn+1,1¢”a1) <> other hopping terms

{ty n < mass term

<> interaction term
new d.o.f. (bos@




How to make tensor

1) Expand BW, and then new d.o.f.(bosonic) appears

2) Integrate out old d.o.f. (Grassmann) and then one
obtains tensor network rep.

z ; i / (H d%d%)
New d.o.f. w t

tn,l — . .
X —[ {e‘“@bnﬂ 1Un, 1} {6“¢n,2¢n+i,2} hopping term for 15t direc.

n

X ]xnl []"“’”2 hopping term for 2" direc.

Sn,2

X — (m+ 2)1%,11%,1} o { — (m+ 2)%@,2%%,2} mass term

Sn,3

X ZgQZ;n,lwnJlEn,glbn,g} 4-fermion interaction term




How to make tensor

Expand BW, and then new d.o.f. (bosonic) appears

Integrate out old d.o.f. (Grassmann) and then one
obtains tensor network rep.

However, before/after the integration, sign factor
originating from Grassmann nature may appear
“Randomly” - “Sign problem”?



How to make tensor

Expand BW, and then new d.o.f. (bosonic) appears

Integrate out old d.o.f. (Grassmann) and then one
obtains tensor network rep.

However, before/after the integration, sign factor
originating from Grassmann nature may appear
“Randomly” - “Sign problem”?

To deal with the sign factor better, introduce new
Grassmann variables



New Grassmann variable

same exponent

Say / \

=1
[New Grassmanﬁ




New Grassmann variable

Say

tnl

— tn,l . _ ,
(M busiatna) " = [ o) (9, i00)
- tn,1
— /(euwn,ldgn,l¢n+i,1€n,l>

“shuffle”



New Grassmann variable

Say

_ tn71
= [ (bt )
—p/2 R e o
_ /(e 7 ¢n,1d§n,1> (e z ¢n+i,1§n,1)

separate ¥n ¢n+i

By introducing new Grassmann variable and pairing it with
old d.o.f., one can avoid an awkward manipulation of sign
factors and can easily integrate out the old d.o.f.

Introduce new Grassmann variable for other hopping terms as well



Tensor network rep.

Z = Z /HQ; b 17 s tn = (tn,1,tn,2)

{t,} Tp = (Tn1,Tn2)

fermionic part
7:5 nTnt x — Ttnxntn 1T, 5 &

n—1%n—-2 —
/5 gnld—2n22dnmn1€n 12€n 11d77nn 22d_7121

bosonic part (€n+1,1fn,1) ! (fn,2fn+i,2) "2 (Mg 2.1M0,0) " (Nn,210 45 2) 2

L
Lywnt, sz, 5 = €XP [_ —ln1 —t, i1 Tlp2+1, 3 2)}

2(

S [ @ndin (240 6002002)"

Sn,1,8n,2,5n,3= 0

X (_(m + 2>¢n 1¢n 1)Sn71 (_<m + Z)QZn 2¢n 2)87%2

Typ_51 Tp_ 59 7ty 91 tn 1,2 -Tn,2 _ Tn,1 1 7tn,2
X an Xn2 n,1 Xn2 nlw ¢



Other issues

m Coarse-graining can be done with some care about
the fermionic part of tensor

m For finite temperature system, anti-periodic BC is
imposed for fermions. This can be taken into account
by inserting another tensor (matrix) in one-time slice

m If you want more flavors N, the number of index of
tensor increases N times.



InZ

Numerical results: In Z

2800 0.0025 . .
2600 5
$ 0002
2400 <
"G 0.0015
2200 Q‘E
2000 = 0.001
©
1800 5
N 0.0005
1600 =
1400 ' ' ' 0
0 0.5 1 1.5 2




InZ

2800
2600
2400
2200
2000
1800
1600

1400

Numerical results: In Z

bad approximation

0.0025

TRG Dg=32 ——
exact

Phase transition ?

0.002

0.0015

0.001

0.0005

l(In Zgyact = IN Z1ra)IN Zoyactl

Truncation error gets larger around PT?



Fermion number density

1‘ 0.5 1

onset

1€ saturation density

Dcut = 32

m = 0 bare mass

2 327



Summary

m Grassmann TRG

m Introduce new Grassmann variables to deal with “new sign
problem”

m Demonstrate an extension to finite density in GN model

m Outlook
m Extension to Higher dimensional system
m Higher order Grassmann TRG
m 2+1D Wilson Fermions = Domain wall Fermions in 2D

m Lattice SUSY, Lattice chiral gauge theory



