QCD phase transition at real chemical potential with canonical approach Yusuke Taniguchi (University of Tsukuba) for Zn Collaboration

R.Fukuda (Tokyo) A.Nakamura (RCNP) S.Oka (Rikkyo) A.Suzuki (Tsukuba)

het-lat/1504.04471

 High density region
 by experiments
 J-PARC
 RIKEN-RIBF
 GSI-FAIR
 Neutron start with
 2 x Solar mass

 High density region
 by experiments
 J-PARC
 RIKEN-RIBF
 GSI-FAIR
 Neutron start with
 2 x Solar mass

Our tool: Lattice QCD Complex action Sign problem

Monte Carlo method

Monte Carlo method Perform a path integral $Z = \int DUe^{-S_G[U]}$

Monte Carlo method Perform a path integral $Z = \int DUe^{-S_G[U]}$ Generate fields U $\{U\} = U_1, U_2, \dots, U_N$

with a probability proportional to $e^{-S_G[U]}$

Monte Carlo method Perform a path integral $Z = \int DUe^{-S_G[U]}$ Generate fields U $\{U\} = U_1, U_2, \dots, U_N$ with a probability proportional to $e^{-S_G[U]}$ VEV of an operator $\langle O \rangle = \frac{1}{N} \sum_{i=1}^{N} O(U_i)$

Monte Carlo method Perform a path integral $Z = \int DUe^{-S_G[U]}$ Generate fields U $\{U\} = U_1, U_2, \ldots, U_N$ with a probability proportional to $e^{-S_G[U]}$ VEV of an operator $\langle O \rangle = \frac{1}{N} \sum^{N} O(U_i)$ Integrate out quark fields $Z = \int DU \int D\bar{\psi} D\psi e^{-\int \bar{\psi} D\psi} e^{-S_G} = \int DU \text{Det} D(U) e^{-S_G(U)}$

Is DetD Boltzmann weight?γ5 Hermiticity on lattice

 $D^{\dagger} = \gamma_5 D \gamma_5$

 γ_5 Hermiticity on lattice

 γ_5 Hermiticity on lattice

For Nf=2 flavors

 γ_5 Hermiticity on lattice

For Nf=2 flavors $(\text{Det}D)^2 \ge 0$

For Nf=2 flavors $(\text{Det}D)^2 \ge 0$

If one introduces the chemical potential

For Nf=2 flavors $(\text{Det}D)^2 \ge 0$

If one introduces the chemical potential $(\text{Det}D(\mu))^* = \text{Det}D(-\mu^*)$

 $\left(\operatorname{Det} D(\mu)\right)^* = \operatorname{Det} D(-\mu^*)$

OK if the chemical potential is pure imaginary

If one introduces the chemical potential

 $\left(\operatorname{Det} D(\mu)\right)^* = \operatorname{Det} D(-\mu^*)$

OK if the chemical potential is pure imaginary

Treat DetD as an observable = reweighting

$$Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$$

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$

$$0 \text{ or imaginary}$$

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$
$$= \left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \stackrel{\text{O or imaginary}}{\text{Det}D_{W}(\mu_{0})}$$

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$
$$= \left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \stackrel{\text{O or imaginary}}{\text{bad behavior}}$$

re-weighting technique

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$

$$= \left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \stackrel{\text{O or imaginary}}{\text{bad behavior}}$$

Please integrate with MC $\int dx e^{-ix} e^{-x^2}$

re-weighting technique

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$

$$= \left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \stackrel{\text{O or imaginary}}{\text{bad behavior}}$$

Please integrate with MC $\int dx e^{-ix} e^{-x^2}$

re-weighting technique

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$

$$= \left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \stackrel{\text{O or imaginary}}{\text{bad behavior}}$$

Please integrate with MC $\int dx e^{-ix} e^{-x^2}$

Almost impossible!

Utilize imaginary chemical potential

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$$

Grand canonical partition function

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

for every energy and number of particles

Grand canonical partition function

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

for every energy and number of particles For QCD $\left[\hat{H}, \hat{N}\right] = 0$

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$
$$= \sum_n \sum_E \left\langle E, n \left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right| E, n \right\rangle$$

$$Z_G(T, \mu, V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$$
$$= \sum_n \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T} + \frac{\mu}{T}n\right) \right| E, n \right\rangle$$
$$= \sum_n Z_C(T, n, V)\xi^n$$

$$Z_G(T, \mu, V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$$
$$= \sum_n \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T} + \frac{\mu}{T}n\right) \right| E, n \right\rangle$$
$$= \sum_n Z_C(T, n, V)\xi^n \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$$

$$Z_{G}(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$
$$= \sum_{n}\sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right|E,n\right\rangle$$
$$= \sum_{n}\frac{Z_{C}(T,n,V)}{\xi^{n}} \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$$

$$Z_{G}(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$
$$= \sum_{n}\sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right|E,n\right\rangle$$
$$= \sum_{n}Z_{C}(T,n,V)\xi^{n} \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$$
$$\frac{1}{2}\operatorname{Contended} = e^{-\frac{\mu}{T}}$$

$$Z_C(T, n, V) = \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T}\right) \right| E, n \right\rangle$$
Grand canonical partition function

$$Z_{G}(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

Fugacity

$$=\sum_{n}\sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right|E,n\right\rangle$$

expansion

$$=\sum_{n}\frac{Z_{C}(T,n,V)}{\xi^{n}}$$
Fugacity

$$\xi = e^{\frac{\mu}{T}}$$

Canonical partition function

$$Z_{C}(T,n,V) = \sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}\right)\right|E,n\right\rangle$$

Solution = Canonical approach How to extract Z_c(n) from Z_G(μ)? $Z_G(T, \mu, V) = \sum_{n=-\infty}^{\infty} Z_C(T, n, V)\xi^n$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$?

$$Z_G(T,\mu,V) = \sum_{n=-\infty} Z_C(T,n,V)\xi^n$$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$?

$$Z_G(T,\mu,V) = \sum_{n=-\infty}^{\infty} Z_C(T,n,V)\xi^n$$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$? $Z_G(T,\mu,V) = \sum Z_C(T,n,V)\xi^n$ $n = -\infty$ Cauchy's integral theorem $Z_C(T,n,V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T,\xi,V)$ ξ Change the contour to unit circle $\xi = e^{i\theta}$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$? $Z_G(T,\mu,V) = \sum Z_C(T,n,V)\xi^n$ $n = -\infty$ Cauchy's integral theorem $Z_{C}(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_{G}(T, \xi, V)$ ${\xi}$ Change the contour to unit circle $\xi = e^{i\theta}$ Fourier tr. in imaginary chemical potential! $Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$? $Z_G(T,\mu,V) = \sum Z_C(T,n,V)\xi^n$ $n = -\infty$ A. Hasenfratz and D. Toussaint Cauchy's integral theorem $Z_{C}(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_{G}(T, \xi, V)$ ξ Change the contour to unit circle $\xi = e^{i\theta}$ Fourier tr. in imaginary chemical potential! $Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$? $Z_G(T,\mu,V) = \sum Z_C(T,n,V)\xi^n$ $n = -\infty$ A. Hasenfratz and D. Toussaint Cauchy's integral theorem $Z_{C}(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_{G}(T, \xi, V)$ ξ Change the contour to unit circle $\xi = e^{i\theta}$ Fourier tr. in imaginary chemical potential! $Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$

Solution = Canonical approach How to extract $Z_{C}(n)$ from $Z_{G}(\mu)$? $Z_G(T,\mu,V) = \sum Z_C(T,n,V)\xi^n$ $n = -\infty$ A. Hasenfratz and D. Toussaint Cauchy's integral theorem $Z_C(T, n, V) = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} Z_G(T, \xi, V)$ Change the contour to unit circle $\xi = e^{i\theta}$ Fourier tr. in imaginary chemical potential! Monte Carlo $Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$ simulation

 ∞

 ∞

 ∞

I cannot imagine $\mathrm{Det}D_W(\mu)$ to diverge except at $\mu = \pm \infty$

How about the phase transition?

How about the phase transition?

Phase transition is related to zeros of $ZG(\xi)$

How about the phase transition?

Phase transition is related to zeros of $ZG(\xi)$ Lee-Yang zeros!

Analytic continuation is perfectly safe for $ZG(\xi)$!

How about the phase transition?

Phase transition is related to zeros of $ZG(\xi)$ Lee-Yang zeros!

Fourier tr. in imaginary chemical potential!

$$Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$$

Fourier tr. in imaginary chemical potential!

$$Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$$

There are two problems

Fourier tr. in imaginary chemical potential!

$$Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$$

There are two problems

Partition function $Z_G(T, e^{i\theta}, V)$ is numerically expensive

Fourier tr. in imaginary chemical potential!

$$Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$$

There are two problems

Partition function $Z_G(T, e^{i\theta}, V)$ is numerically expensive

Numerical Fourier transformation is difficult.

Frequent cancellation between plus-minus signs

Fourier tr. in imaginary chemical potential!

$$Z_C(T, n, V) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} Z_G(T, e^{i\theta}, V)$$

There are two problems

Partition function $Z_G(T, e^{i\theta}, V)$ is numerically expensive

Numerical Fourier transformation is difficult.

Frequent cancellation between plus-minus signs

Easy way to solve these two!

Hopping parameter expansion

Hopping parameter expansion

Instability in Fourier tr. is solved

Fugacity expansion of Dirac determinant Det D(ξ)

Fugacity expansion of Dirac determinant Det D(ξ)

Want to evaluate Dirac determinant cheaply!

Fugacity expansion of Dirac determinant Det D(ξ)

Want to evaluate Dirac determinant cheaply!

Lattice QCD Dirac operator

$$D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$$

Fugacity expansion of Dirac determinant Det D(ξ)

Want to evaluate Dirac determinant cheaply!

Lattice QCD Dirac operator

$$D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$$
$$\left(Q_{\mu}^+\right)_{nm} = (1 - \gamma_{\mu}) U_{\mu}(n) \delta_{m, n+\hat{\mu}}$$

Fugacity expansion of Dirac determinant Det D(ξ)

Want to evaluate Dirac determinant cheaply!

Lattice QCD Dirac operator

$$D_{W}(\mu) = 1 - \kappa Q_{s} + \kappa e^{\mu a} Q_{4}^{+} + \kappa e^{-\mu a} Q_{4}^{-}$$
$$(Q_{\mu}^{+})_{nm} = (1 - \gamma_{\mu}) U_{\mu}(n) \delta_{m,n+\hat{\mu}}$$
$$(Q_{\mu}^{-})_{nm} = (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(m) \delta_{m,n-\hat{\mu}}$$

Fugacity expansion of Dirac determinant Det D(ξ)

Want to evaluate Dirac determinant cheaply!

Lattice QCD Dirac operator

$$D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$$

expansion in $e^{\pm \mu a}$

expansion in $\kappa = \frac{1}{2(ma+4)}$

Hopping parameter expansion

Fugacity expansion of Dirac determinant Det D(ξ)

Lattice QCD Dirac operator

$$D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$$
expansion in $\kappa = \frac{1}{2(ma+4)}$ expansion in $e^{\pm \mu a}$

Hopping parameter expansion

Fugacity expansion of Dirac determinant Det D(ξ)

Hopping parameter expansion

Expand TrLog
$$D_W(\mu)$$

Log $(I - \kappa Q) = -\sum_n \frac{\kappa^n Q^n}{n}$

Fugacity expansion of Dirac determinant Det D(ξ)

Hopping parameter expansion

Expand TrLog
$$D_W(\mu)$$

Log $(I - \kappa Q) = -\sum_n \frac{\kappa^n Q^n}{n}$

Re-sum the expansion

Fugacity expansion of Dirac determinant Det D(ξ)

Hopping parameter expansion

Expand TrLog
$$D_W(\mu)$$

Log $(I - \kappa Q) = -\sum_n \frac{\kappa^n Q^n}{n}$

Re-sum the expansion

Fugacity expansion of Dirac determinant Det D(ξ)

Meng et al. (Kentucky)

Lattice QCD Dirac operator $D_W(\mu) = 1 - \kappa Q_s + \kappa e^{\mu a} Q_4^+ + \kappa e^{-\mu a} Q_4^-$ expansion in $\kappa = \frac{1}{2(ma+4)}$ expansion in $e^{\pm \mu a}$

Winding number expansion $TrLog D_W(\mu)$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

Winding number expansion $\mathbb{Tr}_{Log D_W(\mu)}$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

 \rightarrow non-trivial μ dependence

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

 \rightarrow non-trivial μ dependence

$$\operatorname{TrLog}\left(I - \kappa Q\right) = -\sum_{n=1}^{\infty} \frac{\kappa^n}{n} \operatorname{Tr}Q^n$$

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

 \rightarrow non-trivial μ dependence

$$\operatorname{TrLog}\left(I - \kappa Q\right) = -\sum_{n=1}^{\infty} \frac{\kappa^n}{n} \operatorname{Tr}Q^n$$

resummation

quark hopping need to make a loop for $\operatorname{Tr}Q^n$

Non-zero winding in T direction

 \rightarrow non-trivial μ dependence

$$\operatorname{TrLog}\left(I - \kappa Q\right) = -\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n} \operatorname{Tr}Q^{n}$$
resummation
$$= \sum_{N=-\infty}^{\infty} W_{N} \xi^{N}$$
Kentucky '08

Canonical partition function $Z_{C}(n)$ Grand partition fn. $Z_{G}(\mu)$ \leftarrow re-weighting

Canonical partition function Zc(n) Grand partition fn. Z_G(μ) \leftarrow re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$

Canonical partition function Zc(n) Grand partition fn. Z_G(μ) \leftarrow re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ \downarrow 0 or imaginary

Canonical partition function Zc(n)

$$Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$$
$$= \left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0}) \stackrel{\text{O or imaginary}}{}$$

Kentucky '08

Canonical partition function Zc(n) Kentucky '08 Grand partition fn. $Z_G(\mu)$ — re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \begin{array}{c} \text{O or imaginary} \\ \text{hopping parameter exp.} \end{array}$ $= \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle \ Z_G(\mu_0)$

Canonical partition function Zc(n) Kentucky '08 Grand partition fn. $Z_G(\mu)$ — re-weighting $Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$ fugacity exp. = $\left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0})$ hopping parameter exp. $\sum_{n=-\infty}^{\infty} Z_{C}(n)\xi^{n} = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_{k}\xi^{k}\right)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0})$

Canonical partition function Zc(n) Kentucky '08 Grand partition fn. $Z_G(\mu)$ — re-weighting $Z_{G}(\mu) = \int DU \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \text{Det}D_{W}(\mu_{0})e^{-S_{G}}$ fugacity exp. = $\left\langle \frac{\text{Det}D_{W}(\mu)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0})$ hopping parameter exp. $\sum_{n=-\infty}^{\infty} Z_{C}(n) \xi^{n} = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_{k}\xi^{k}\right)}{\text{Det}D_{W}(\mu_{0})} \right\rangle_{0} Z_{G}(\mu_{0})$

Canonical partition function Zc(n) Kentucky '08 Grand partition fn. $Z_G(\mu)$ — re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ fugacity exp. = $\left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)^0$ or imaginary $\sum_{n=-\infty}^{\infty} Z_C(n) \xi^n = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$ Fourier Transformation (1,0)0-

$$Z_C(n) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k e^{i\kappa\theta}\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle_0$$

Plan of the talk

- 1. Introduction
- ✓ 2. Hopping parameter expansion
 - 3. Numerical setup
 - 4. Canonical partition function Zn
 - 5. Hadronic observables
 - 6. Conclusion

Numerical setup

- \star Iwasaki gauge action
- **\star** Clover fermion Nf=2
 - APE stout smeared gauge link $c_{SW} = 1.1$

★ Box sizes $8^3 \times 4 = 12^3 \times 4$

β	T/Tc	К	$m\pi/m ho$
0.9	0.67	0.137	0.8978(55)
1.1	0.69	0.133	0.9038(56)
1.3	0.72	0.138	0.809(12)
1.5	0.78	0.136	0.756(13)
1.7	1	0.129	0.770(13)
1.9	1.46	0.125	0.714(15)
2.1	3.22	0.122	0.836(47)

phase transition

phase transition?
Polyakov loop

Plan of the talk

- 1. Introduction
- ✓ 2. Hopping parameter expansion
- ✓ 3. Numerical setup
 - 4. Canonical partition function Zn
 - 5. Hadronic observables
 - 6. Conclusion

Canonical |Zc(n)|

canonical partition fn. $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots$ $+Z_{-1}\xi^{-1}+Z_{-2}\xi^{-2}+\cdots$ $n = -\infty$

n_B

Where can we apply HPE?

