Recent Progress in Conformal Bootstrap

@JICFuS seminar, 2015/4/15 Tomoki Ohtsuki (Kavli IPMU)

Part 1 : Bootstrap Minimal

Relevance of CFTs

- Why are conformal field theories (CFTs) so important?
- UV & IR limit of RG flows must be scale invariant.
- In most cases scale invariance together with unitarity & Lorentz invariance implies an enhanced symmetry, that is, conformal symmetry (see e.g. arXiv:1302.0884).
- Thus, CFTs are ubiquitous in theoretical (especially highenergy & condensed matter) physics.

Philosophy of the conformal bootstrap program

- "Solve the CFTs from consistency conditions, without assuming Lagrangian" (Ferrara-Gatto-Grillo '73, Polyakov '74)
- Seems quite unwieldy because there is an infinite # of unknown parameters in CFTs and the consistency conditions are also infinitedimensional.
- Is it just an empty dream?

Numerical conformal bootstrap (Rattazzi, Rychkov, Tonni, Vichi, `08)

• It is realized that the CFT consistency condition alone allows us to delineate the following curve.

• Meaning: for general 4d CFTs with dimension Δ_{ϕ} scalar ϕ , the $\phi \times \phi$ OPE must contain a scalar with dimension smaller than $\Delta_c(\Delta_{\phi})$.

the 3d Ising "solution"

• Subsequently the analysis for d = 3 was made, resulting

- It developed a "kink" at the position where the 3d Ising model parameters sit. (El-showk *et. al.*, '12)
- It is quite mysterious why such a phenomenon take place.

Goal of Part I

 Tell you how we can obtain such non-trivial curves solely from CFT consistency conditions, without relying on Lagrangians!

Outline

- 1. Conformal kinematics
- 2. Conformal block decomposition of 4pt functions
- 3. The bootstrap equation and linear functional argument

1.1 Some conformal kinematics

The conformal invariance

 Conformal transformation means diffeomorphism which preserves the metric up to position dependent Weyl rescaling:

$$g_{\mu\nu\nu} = \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial x^{\nu}}{\partial x'^{\nu'}} g_{\mu\nu} = e^{\sigma(x)} g_{\mu\nu}$$

 It is easy to classify the solutions for the flat background. They are spanned by the usual Poincare transformation, dilatation, and special conformal transformation (SCT):

$$x \Rightarrow \frac{x + x^2 y}{1 + 2x \cdot y + x^2 y^2}$$

The state-operator correspondence

- We require that the states in the Hilbert space are in oneto-one with the local operators: $\phi(0) |0\rangle = |\phi\rangle$ (Note : If there's a Lagrangian, this can be derived.)
- Operators (states) which can be written as the derivatives $(P^{\mu}-action)$ of other local operators is called descendant operators (states). Otherwise they are called primary.
- The CFT Hilbert space are spanned by $\phi_1(0) |0\rangle, \partial^{\mu}\phi_1(0) |0\rangle = P^{\mu} |\phi_1\rangle, P^{\mu}P^{\nu} |\phi_1\rangle, P^{\mu}P^{\nu}P^{\rho} |\phi_1\rangle,$ $\cdots, |\phi_2\rangle, P^{\mu} |\phi_2\rangle, P^{\mu}P^{\nu} |\phi_2\rangle, \cdots, \text{ and so on.}$

Kinematical constraints from unitarity

- The scaling dimensions of operators cannot be arbitrary in <u>unitary</u> CFTs.
- In particular, primary operators (except for identity op.) must have its scaling dimension

$$\Delta_0 \ge \begin{cases} \frac{d-2}{2} & (l=0) \\ l+d-2 & (l\neq 0) \end{cases}$$

, where l is the spin of O. Otherwise some descendant states acquire negative norm!

• But no upper bound in kinematical level.

Conformal 2 and 3pt functions

 Thanks to dilation, 2pt function of scale invariant QFT is determined to be

$$\langle O(x_1)O(x_2)\rangle = \frac{1}{(x_1 - x_2)^{2\Delta_0}}$$
 (Δ_0 : scaling dim. of O)

• Thanks to the special conformal transf., in CFTs the 3pt functions is also determined by kinematics: $(O_1(x_1)O_2(x_2))$

$$= \frac{\lambda_{0_1 0_2 0_3}}{(x_1 - x_2)^{\Delta_1 + \Delta_2 - \Delta_3} (x_2 - x_3)^{\Delta_2 + \Delta_3 - \Delta_1} (x_3 - x_1)^{\Delta_3 + \Delta_1 - \Delta_2}}$$

(First take x_3 to origin by translation, then x_1 to infinity by SCT and finally x_2 to (1,0,...,0) by rotation+ dilatation.)

• Here $\lambda_{O_1O_2O_3}$ refers the OPE coefficient, $O_1(x)O_2(0) \sim \frac{\lambda_{O_1O_2O_3}}{\chi^{\Delta_1 + \Delta_2 - \Delta_3}} O_3(0)$

4pt function

- 4pt functions cannot be determined from kinematics alone.
- All we can do for $\langle O_1(x_1)O_2(x_2)O_3(x_3)O_4(x_4) \rangle$ is to
- 1. First take x_4 to the origin.
- 2. Then x_1 to the infinity by special conformal transf.
- 3. Then x_2 to $(1,0,\cdots,0)$ by dilation + rotation.
- 4. Finally x_3 to $(x, y, 0, \dots, 0)$ by rotation (which fixes x_2).
- Thus the 4pt function is recovered from 2d-like "standard" configuration.

1.2 Conformal block decomposition of 4pt function

A lesson from elementary quantum mechanics

- 4pt correlators are encoded in some functions on 2dplane, which is not fixed kinematically.
- But to some extent we can pursue, if one remembers the logic in elementary quantum mechanics, that is,

$$1 = \sum_{\psi: \text{all states}} |\psi\rangle\langle\psi|$$

• In CFTs the sum over states reads:

$$\sum_{\psi:\text{all states}} |\psi\rangle\langle\psi| = \sum_{\phi:\text{all primaries }\psi:\text{primaries of }\phi} |\psi\rangle\langle\psi|$$

"Conformal partial wave"

• Insert the complete set of states in the identical scalar 4pt function $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle$

$$= \sum_{\psi:\text{all states}} \langle \phi(x_1)\phi(x_2) | \psi \rangle \langle \psi | \phi(x_3)\phi(x_4) \rangle$$

• Then organize them as a double-summation:

$$= \sum_{\substack{O: \text{all primaries } \psi: \text{ descendants} \\ \text{ of } O}} \langle \phi(x_1)\phi(x_2)|\psi\rangle\langle \psi|\phi(x_3)\phi(x_4)\rangle$$

Matrix elements as 3pt function

- Fixing the primary O, evaluate the matrix elements like $\langle 0|\phi(x_1)\phi(x_2)|\psi\rangle$.
- Recall that $|\psi\rangle$ is of the form $P^{\mu_1}P^{\mu_2}\cdots P^{\mu_n}|O\rangle$ and $|O\rangle = O(0)|0\rangle$ hence

$$P^{\mu_1}P^{\mu_2}\cdots P^{\mu_n}|\phi\rangle = \partial^{\mu_1}\partial^{\mu_2}\cdots \partial^{\mu_n}\phi(0)|0\rangle.$$

• Thus matrix elements are computed from the 3pt function, $\lim_{y\to 0} \partial_y^{\mu_1} \cdots \partial_y^{\mu_n} \langle 0 | \phi(x_1) \phi(x_2) O(y) | 0 \rangle$ Recall that 3pt function is determined kinematically up to OPE coefficients!

The conformal block

- Thus the partial sum can be rewritten, $\sum_{\substack{\psi: \text{ descendants}}} \langle \phi(x_1) \phi(x_2) | \psi \rangle \langle \psi | \phi(x_3) \phi(x_4) \rangle$ of O $= \lambda_{\phi\phi O}^2 \times \frac{g(z, \overline{z}; \Delta_O, l_O, \Delta_{\phi})}{x_{12}^{2\Delta\phi} x_{34}^{2\Delta\phi}}$
- Here z is the x_3 -coordinate in the "standard" configuration.
- The function g is fixed by CFT kinematics and called the "conformal block". (In old literature it is called "conformal partial wave")

The "s-channel" decomposition

• It turns out $g(z, \overline{z}; \Delta_0, \Delta_{\phi})$ is independent of Δ_{ϕ} .

• The final form for 4pt function is

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle$$

$$= \frac{1}{x_{12}^{2\Delta\phi}x_{34}^{2\Delta\phi}} \sum_{0:\text{primaries}} \lambda_{\phi\phi0}^2 g(z,\bar{z};\Delta_0,l_0)$$

 This expression is rapidly converging. (Pappadpulo, Espin, Rychkov, Rattazzi, '12)

1.3 The Bootstrap Equation and Linear functional Argument

Crossing symmetry

- Actually our conformal correlators behave properly only when they are "radial ordered", i.e., operator ordering $\phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)$ means $|x_1| > |x_2| > |x_3| > |x_4|$.
- We can equally compute the 4pt function from another ordering, say $\phi(x_3)\phi(x_2)\phi(x_1)\phi(x_4)$, and perform the conformal block decomposition.
- These two expression must agree when both of them converge!

Conformal block in *t*-channel

- Correlator in the ordering $\phi(x_3)\phi(x_2)\phi(x_1)\phi(x_4)$ can be decomposed $\langle \phi(x_3)\phi(x_2)\phi(x_1)\phi(x_4) \rangle$ $= \frac{1}{x_{23}^{2\Delta\phi}x_{14}^{2\Delta\phi}} \sum_{0:\text{primaries}} \lambda_{\phi\phi0}^2 g(1-z,1-\bar{z};\Delta_0,l_0)$
- Note that,
- 1. Conformal block argument has been changed to 1 z
- 2. OPE factor and the summation range are the same!

The bootstrap equation

• Thus we have, (adding prefactor $x_{13}^{2\Delta\phi}x_{24}^{2\Delta\phi}$,)

$$0 = \sum_{0:\text{primaries}} \lambda_{\phi\phi0}^2 \times F(z, \overline{z}; \Delta_0, l_0, \Delta_{\phi})$$

, where

$$F(z, \bar{z}: \Delta_0, l_0, \Delta_{\phi}) = x_{13}^{2\Delta_{\phi}} x_{24}^{2\Delta_{\phi}} \left(\frac{g(z, \bar{z}: \Delta_0, l_0)}{x_{12}^{2\Delta_{\phi}} x_{34}^{2\Delta_{\phi}}} - \frac{g(1 - z, 1 - \bar{z}: \Delta_0, l_0)}{x_{32}^{2\Delta_{\phi}} x_{14}^{2\Delta_{\phi}}} \right)$$

 Thus in CFT, infinitely many unknowns are constrained by infinite-dimensional constraint.

Linear functional argument -1

• Fix Δ_{ϕ} and <u>assume</u> there is a linear functional Λ : (functions on z – plane) $\rightarrow \mathbb{R}$ and some "hypothetical gap" Δ_c , with the following property:

$$\begin{cases} \Lambda \left(F(z, \bar{z}, \Delta, l, \Delta_{\phi}) \right) \ge 0 \quad (\text{for } \Delta \ge l + d - 2, \quad \text{if } l \neq 0) \\ \Lambda \left(F(z, \bar{z}, \Delta, l, \Delta_{\phi}) \right) \ge 0 \quad (\text{for } \Delta \ge \Delta_{c}, \quad \text{if } l = 0) \\ \Lambda \left(F(z, \bar{z}, 0, 0, \Delta_{\phi}) \right) \ge 0 \end{cases}$$

Then apply this functional to the bootstrap equation,

$$0 = \sum_{0:\text{primaries}} \lambda_{\phi\phi0}^2 \times F(z, \overline{z}; \Delta_0, l_0, \Delta_\phi)$$

Linear functional argument -2

•
$$0 = \Lambda(0) = \sum_{O} \lambda_{\phi\phi O}^{2} \Lambda(F(z, \bar{z}; \Delta_{O}, l_{O}))$$

$$= \sum_{\substack{O:\\ l_{O} \neq 0}} \lambda_{\phi\phi O}^{2} \Lambda\left(F\left(z, \bar{z}; \Delta_{O}, l_{O}, \Delta_{\phi}\right)\right) + \sum_{\substack{O:\\ l_{O} = 0, \Delta_{O} \geq \Delta_{C}}} \lambda_{\phi\phi O}^{2} \Lambda\left(F\left(z, \bar{z}; \Delta_{O}, l_{O}, \Delta_{\phi}\right)\right) + \Lambda(F(z, \bar{z}; 0, 0, \Delta_{\phi}))$$

$$+ \sum_{\substack{O:\\ l_{O} = 0, \frac{d-2}{2} < \Delta_{O} < \Delta_{C}}} \lambda_{\phi\phi O}^{2} \Lambda\left(F\left(z, \bar{z}; \Delta_{O}, l_{O}, \Delta_{\phi}\right)\right) + \Lambda(F(z, \bar{z}; 0, 0, \Delta_{\phi}))$$

- The first, second and the last term is positive by the assumption!
- Sontribution of the third term must be present!

• There must be an operator with $\frac{d-2}{2} < \Delta_0 < \Delta_c "$

Difficulties

- Thus finding such Λ and Δ_c has quite important meaning.
- The smaller the value Δ_c , the stronger the bound.
- How can we find such a linear functional? There are two difficulties.
- 1. The space of all the linear functionals is ∞ -dimensional.
- 2. Also ∞ ly many inequalities must be checked.

Truncating the difficulties 1.

- Though not ideal, we can restrict our attentions within finite dimensional subspace.
 - Adopt the ansatz $\Lambda(*) = \sum_{m,n \ge 0}^{m+n \le N_{\max}} c_{m,n} \partial_z^m \partial_{\bar{z}}^n (*) \Big|_{z=\frac{1}{2}}$
- , where N_{\max} is some cutoff and search for $c_{m,n}$.
- As you take $N_{\max} \rightarrow \infty$, we expect we can approach the ideal choice for Δ_c .

Truncating the difficulties 2.

- The difficulty 2. is actually harder to over come.
- An obvious way is to discretize: i.e., check the inequalities $\Lambda\left(F(z,\bar{z},\Delta,l,\Delta_{\phi})\right) \ge 0$

for $\Delta = ($ unitarity bound $) + \varepsilon * i$, starting from $i = 0, 1, \cdots$ until $\varepsilon * i$ becomes sufficiently large.

- Since conformal block take universal form as $l \to \infty$, check this for $l \leq 30$ is enough.
- Note: now there is a sophisticated way of avoiding this ugly discretization.

Reduction to the linear programming

• Now the problem is to find real numbers $\{c_{m,n}\}_{m,n\geq 0}^{m+n\leq N_{\max}}$ satisfying inequality

 $\sum_{\substack{m,n \ge 0 \\ m,n \ge 0}} c_{m,n} (\partial^m \bar{\partial}^n F(z, \bar{z}, \Delta, l, \Delta_\phi) \Big|_{z=\frac{1}{2}}) \ge 0$ for with finite # of (Δ, l) pairs.

- Linear programming! The computers can address the problem much better.
- Repeating the analysis for each Δ_{ϕ} we obtain $\Delta_{c}(\Delta_{\phi})$.

Numerical output in 4d (Rattazzi-Rychkov-Tonni-Vichi, '08)

• The output of the above procedure with various $N_{\rm max}$

Numerical output in 2d (Rychkov-Vichi, '09)

• For d = 2, the same procedure gives us

• This encouraged Slava Rychkov and collaborators to analyze the same problem in d = 3, though there was no good algorithm to compute conformal block for $d \neq 2,4$ at that time. (They had to develop!)

3d Ising "solution" (El-showk, *et. al.*, '12)

The output for 3d then turned out to be:

 Although still far from the "solution", the 3d Ising model is cornered by the bootstrap method.

Previously found kinks

- Wilson-Fisher fixed points in the 2 < d < 4 interval
- d = 3 O(n)-vector models (to be explained below)
- d = 5 O(n)-universality class
- d = 3 N = 1,2 super-Ising model
- $d = 3 U(2)_1 \times U(1)_{-1}$ ABJ model (with N = 8 SUSY)

For a much more exciting example, stay here for Part 2!

Summary

- CFTs are much more tightly constrained than the ordinary QFTs due to conformal invariance & unitarity& crossing relations.
- The bootstrap equation together with the linear functional method gives a powerful bound, sometimes showing "kink" at the actual CFT(e.g. Ising) location, but the fundamental reason is mysterious...

Part 2 : Applications to $O(n) \times O(m)$ CFTs

Based on, arXiv:1404.0489, 1407.6195 with Yu Nakayama

2.1 Introduction: The $O(n) \times O(m)$ wonderland
Pisarski–Wilczek Argument for the Chiral Phase Transition

- 2-flavor QCD classically has the symmetry, $SU(2)_L \times SU(2)_R \times U(1)_B \times U(1)_A$ but the last factor $U(1)_A$ is explicitly broken by anomaly.
- Consider the chiral symmetry breaking transition. There the effective DOF comprises of mesons, neutral under $U(1)_B$.
- After the thermal compactification the effective action is that of 3d $SU(2) \times SU(2) \simeq O(4)$ -symmetric sigma model.
- The transition is either 1st order or 2nd order with O(4)universality class…

$U(1)_A$ -controversies

- But the anomaly is less visible at higher temperature.
- It is quite controversial to what extent the anomaly effect is weaken around the chiral phase transition.
- (Aoki-Fukaya-Taniguchi, '12) argued it is invisible (at the level of effective σ -model) above the critical temperature.
- If it is the case, the relevant σ -model is $SU(2)_L \times SU(2)_R \times U(1)_A \simeq O(4) \times O(2)$ -symmetric Landau-Ginzburg model.

Controversies over Controversies

• Even if the anomaly-restoration scenario is true, we still have controversies: the presence of IR-stable fixed points in the $O(4) \times O(2)$ -LG model is so hard to investigate!

Reference	Method	Result
Pisarski-Wilczek '81	1-loop	No
Wetterich, '97	Functional RG(LPA)	No
Calabrese <i>et. al. ,</i> '03 (A cond-mat paper!)	5-loop + resummation	Yes
Calabrese <i>-Paruccini,</i> '04	5-loop + resummation	No
Fukushima <i>et .al.,</i> '10	Functional RG (∞ dim LPA)	No
Grahl '14	Functional RG (LPA')	Depends heavily on how you truncate. No critical exponent agreed with the 5-loop result.

Another Realization

 O(n) × O(m)-LG model offers a big business also for condensed-matter theorists: imagine n-component antiferromagnetic spin systems on triangular lattice. When n = 2, two ground states are possible:

• The effective field theory at criticality is described by $O(n) \times O(2)$ LGW model (Kawamura `85).

Presence of IR fixed points is again controversial!

What is problematic in the perturbative RG methods?

- The fixed points are quite unusual: they exist only in the region $d \sim 3$ (and not in d= 4 ϵ) and small n.
- Perturbative results can be altered when one considers even higher loop series. As an example, consider O(3)-LG model, with an IR (Heisenberg) fixed point. At 3-loop order the fixed point vanishes! Only at 4-loop order is it restored…
- Dependence on the resummation parameters is also criticized.

What is problematic in the functional RG method?

- Functional RG equation is 1-loop exact!
- But is formulated in the infinite-dimensional space of all possible interaction term.
- We have to truncate this space to some convenient subspace. (E.g. LPA)
- The truncation procedure cannot be justified. Indeed it is reported that the results (existence of fixed point) depend heavily on the order of truncation (Grahl, '14.)

Milestone

- If $O(n) \times O(m)$ -LG model has an IR FP, there we must have an $O(n) \times O(m)$ -symmetric CFT there.
- We can derive the bootstrap constraints in these cases as well (by a generalized method to be explained.)
- Can we observe the kink as in the 3d Ising (no continuous global symmetry) case?

Outline

- 1. Introduction : The $O(n) \times O(m)$ wonderland
- 2. Mouse : O(n)
- 3. Monkey : $O(n) \times O(3)$ with $n \gg 3$
- 4. Human : $O(n) \times O(2)$ with n = 3, 4

2.2 Mouse: O(n)

O(n)-LG model

- Before applying the conformal bootstrap to $O(n) \times O(m)$ models, we briefly review how it proceeds for O(n) models.
- Recall that O(n)-symmetric Landau-Ginzburg model or O(n) -vector model, we have a scalar field transforming in a vector (v) rep. of O(n), ϕ_i .
- Consider a 4pt correlation function : $\langle \phi_i(x_1)\phi_j(x_2)\phi_k(x_3)\phi_l(x_4) \rangle$
- Then we perform conformal block decomposition as well.

Structured conformal block decomposition

- In order for $\langle 0 | \phi_i(x_1) \phi_j(x_2) | \psi \rangle$ to survive, ψ has to transform in some irreducible rep contained in $v \otimes v$.
- Thus ψ is either scalar (S) or traceless-symmetric(T) or anti-symmetric (A).
- The final form of the decomposition contains Kronecker deltas because

 $\langle 0 | \phi_i \phi_j | S \rangle \propto \delta_{ij}$ $\langle 0 | \phi_i \phi_j | T: mn \rangle \propto \left(\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm} - \frac{2}{N} \delta_{ij} \delta_{mn} \right)$ $\langle 0 | \phi_i \phi_j | A: mn \rangle \propto \left(-\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm} \right)$

Vectorial Bootstrap equation

- Here we require the crossing symmetry w.r.t simultaneous exchange $x_1 \leftrightarrow x_3$, $i \leftrightarrow k$.
- We have to match each coefficient of independent δ .
- Three constraints. The bootstrap equation looks like $\sum_{O:S} \begin{pmatrix} 0 \\ -H_O \\ F_O \end{pmatrix} + \sum_{O:T} \begin{pmatrix} F_O \\ \left(1 + \frac{2}{N}\right) H_O \\ \left(1 - \frac{2}{N}\right) F_O \end{pmatrix} + \sum_{O:A} \begin{pmatrix} F_O \\ -H_O \\ -F_O \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Linear functional argument

Thus to generalize the linear functional argument we search for

Λ: (3 − component vector valued function) → ℝ satisfying positivity condition for S,T,A sectors separately.

• According to in which sector (S,T,A) we assume hypothetical gap Δ_c , we can independently bound the lowest dimension of operators.

S-scalar

(Kos, Poland, Simons–Duffin, `13)

• The precise meaning: \exists a scalar operator in the S-rep in $\phi_i \times \phi_j$ OPE with dimension below $\Delta_{c,S,N}(\Delta_{\phi})$.

d = 3 O(N) bounds for T-scalar

Lessons

- Kinks corresponding to O(N)-LG models show up.
- The operator dimension bound can be derived equally well for every global symmetry sector.
- In this O(n)-case, the S and T bounds point out the single model (but there's no guarantee for this).

2.3 Monkey: $O(n) \times O(3)$ with $n \gg 3$

Based on arXiv.1404.0489

More serious experiment with $O(n) \times O(3)$

- The situation in $O(n) \times O(2)$ with n = 3,4 looked like swampland...
- We decided to work in the case where the RG-theoretical studies are solid.
- Thus we started with the $O(n) \times O(3)$ -model with $n \gg 3$. In the $n \to \infty$ limit the model is solvable! We have 1/n expansion.
- Still dynamically rich: the presence of conformal window (more precisely "conformal half-line") is predicted.

Lagrangian description of the $O(n) \times O(m)$ -LG model

Consider a Lagrangian formed from scalar field,

$$\mathcal{L} = \sum_{i,a} \partial_{\mu} \phi_{ia} \partial_{\mu} \phi_{ia} + u \left(\sum_{i,a} \phi_{ia} \phi_{ia} \right)^{2} \\ + v \sum_{i,j,a,b} (\phi_{ia} \phi_{ja} \phi_{jb} \phi_{ib} - \phi_{ia} \phi_{ia} \phi_{jb} \phi_{jb})$$

Here the indices run over i, j = 1, ..., n, a, b = 1, ..., m, i.e., ϕ transforms as a bifundamental of $O(n) \times O(m)$.

• The term proportional to u is actually O(nm) – invariant. When $v \neq 0$, $O(nm) \rightarrow O(n) \times O(m)$ explicitly.

RG prediction

• When n is sufficiently large, the RG flow looks like

 2 more fixed points. The (un)stable one is called the (anti-)chiral fixed point.

The bootstrap equation: too lengthy to repeat

- Can we observe these additional fixed points??
- To obtain the bootstrap constraints we consider $\langle \phi_{ia}(x_1)\phi_{jb}(x_2)\phi_{kc}(x_3)\phi_{ld}(x_4) \rangle$
- => There are 9 global symmetry sectors, denoted by SS, ST, SA, TS, TT, TA, AS, AT, AA
- The bootstrap equation is huge. Consequently the computation is ~100 times heavier than the Ising case.

Bounds for SS spin 0 operator in $O(15) \times O(3)$ model

• Our first sample is $O(15) \times O(3)$ model, where the presence of non-Heisenberg FPs (called "chiral" and "anti-chiral") is undoubtable.

Symmetry enhancement

- Within the precision the bound is identical to that of O(45).
- Such "symmetry enhancement" has been reported for the 4d SU(N)/SO(2N). Is it a general mathematical statement?
- large N prediction for the additional FPs are well-below the bounds. There are two aspects:
- 2. B We cannot observe any symptom of these fixed points from this computation. Can't we "solve" them??

Salvation : Bounds for spin 1 operator in TA sector

• Then we computed the dimension bounds for spin 1 operator in TA representation. Note that such operator has dimension exactly 2 at O(nm) Heisenberg fixed points but not when O(nm) is broken to $O(n) \times O(m)$.

"Kink" in the bound

• When differentiated, it becomes apparent that the slope changes around $\delta \cong 0.515$.

Spectral study

• (EI-Showk, Paulos `12) has shown that once a CFT saturate this kind of bounds, spectrum contained in $\phi_I \times \phi_J$ can be uniquely reproduced from the bootstrap output.

• Our result:
$$(\Delta_{\phi}, \Delta^{SS}) = (0.515, 1.16)$$

Note: although this CFT saturate $\Delta_{c,TA}(\delta)$, it may not do so for the bound in the other sector like $\Delta_{c,SS}(\delta)$!

• The 1/n - prediction for "anti-chiral" fixed point : $(\Delta_{\phi}, \Delta^{SS}) = (0.5148, 1.142)$

=>anti-chiral fixed point is observed!

$O(n) \times O(3)$ family

• Varying n, the bounds $\Delta_{c,TA}(\delta)$ changes its form like

Slope change disappearance

• Around $n = 6 \sim 7$, the kink in $\Delta_{c,TA}(\delta)$ disappears.

• According to large n analysis, such a fixed point disappears at n = 7.3.

Summary for $O(n) \times O(3)$

- We examined operator dimension bounds for O(15) × O(3) model in various global symmetry sector and found that the one in TA sector is saturated by the anti-chiral fixed point. => It is "solvable" as in the d = 3 Ising!
- For smaller values of n, the kink present in spin 1 TA sector bounds of $O(n) \times O(3)$ model disappears. =>Might be a reflection of the conformal window.
- This is the first example where we can observe multiple interacting CFTs in single bootstrap eq.
 - Conclusion: Everything is consistent with the bootstrap!

2.4 Human : $O(n) \times O(2)$

Based on: arXiv:1407.6195

$O(3) \times O(2)$: a signal of frustrated magnet transitions

• For $O(3) \times O(2)$, the bound for ST sector look like:

The spectra agree!

	Δ_{ϕ}	$\Delta_{\rm SS}$	$\Delta_{ m ST}$	Δ_{TS}	Δ_{TT}	$\Delta_{ m AA}$
bootstrap	0.539(3)	1.42(4)	1.69(6)	1.39(3)	1.113(3)	0.89(2)
$\overline{\mathrm{MS}}$	0.54(2)	1.41(12)	1.79(9)	1.46(8)	1.04(11)	0.75(12)
MZM	0.55(1)	1.18(10)	1.91(5)	1.49(3)	1.01(4)	0.65(13)

• The spectra read off around the kink and the higher order \overline{MS} results agree within systematic errors.

• Most natural explanation: the fixed point actually exists!

According to the perturbative analysis, this is IR-stable.

$O(4) \times O(2)$: Signal of the chiral phase transition CFT

The spectral agreement

	Δ_{ϕ}	$\Delta_{ m SS}$	$\Delta_{ m ST}$	Δ_{TS}	Δ_{TT}	$\Delta_{ m AA}$
bootstrap	0.558(4)	1.52(5)	0.82(2)	1.045(3)	1.26(1)	1.71(6)
$\overline{\mathrm{MS}}$	0.56(3)	1.68(17)	1.0(3)	1.10(15)	1.35(10)	1.9(1)
MZM	0.56(1)	1.59(14)	0.95(15)	1.25(10)	1.34(5)	1.90(15)

- Again they agree and we conjecture that the FP exists.
- IR stable according to the perturbative results.

Summary & Discussions

- Despite various criticism, resumed perturbative RG seems to be robust from the comparison with the bootstrap.
- In particular certain frustrated Heisenberg models, i.e., $O(3) \times O(2)$ LGW model can transit continuously.
- Even when $U(1)_A$ is restored, 2-flavor QCD chiral phase transition could be of second order!! We predicted the critical exponents most precisely.

Theoretical backup needed?

- Our working hypothesis "kink => CFT" has not been rigorously proven even for the simplest cases. At this stage our results are phenomenological.
- The deeper understanding of the bootstrap program would provide the complete answer.
Thank you!

• The legend of bootstrap, applied to modern controversy...

Part 3: Future Prospects

Mixed Correlator study

- So far we have been considering only single correlator, $\langle \phi \phi \phi \phi \rangle$.
- Of course there is another opearator $\epsilon(x)$ and we are able to consider the bootstrap equation for $\langle \phi \phi \varepsilon \varepsilon \rangle, \langle \phi \phi \phi \phi \rangle, \langle \varepsilon \varepsilon \varepsilon \varepsilon \rangle$

simultaneously.

 The linear functional argument can be equally applied, but the machinery there is semi-definite programming (a generalization of linear programming).

Universality hypothesis given proof? (Kos *et. al.*,1406.4858)

- Assume that a CFT has only two relevant operator, ϕ, ϵ .
- Then the allowed region for $(\Delta_{\phi}, \Delta_{\epsilon})$ is

Bootstrap state of the art (Simmons-Duffin, 1502.02033)

• Note that the error estimate is rigorous here!!

What's the next?

- Getting more precision?
- The study of correlators with non-scalar operator, like EM-tensor 4pt function

 $\langle T_{\mu_1\nu_1}(x_1)T_{\mu_2\nu_2}(x_2)T_{\mu_3\nu_3}(x_3)T_{\mu_4\nu_4}(x_4)\rangle$ This is now possible, if we have the expression (good approximation algorithm) for the conformal block.

 Now it has become fairly easy to start the bootstrap study, thanks to a user-friendly package, "SDPB" in <u>1502.02033</u>! Anyway all we have to do is to implement the conformal blocks.