ブラックホールー磁場中性子星連星合体 の数値相対論シミュレーション

木内建太(YITP)

共同研究者:関口雄一郎(YITP)、久徳浩太郎(理研)、 柴田大(YITP)、谷口敬介(東大)

可視化:和田智秀(筑波技術大学)

Kiuchi et al. 15, submitted on last Monday

Motivation

- 1. Gravitational waves = Ripples of the space-time
- ▶ Verification of GR
- ▶ The EOS of neutron star matter
- ▶ The central engine of Short Gamma Ray Burst

© YKIS2013 poster

- ▶~10 events / yr for adv. LIGO (KAGRA will be in operation in 2018)
- 2. A possible site of the r-process synthesis A significant amount of neutron star matter could be ejected from BH-NS mergers ; $M_{\rm eie} \approx 10^{-6}$ - $10^{-1} M_{\odot}$ (Kyutoku et al. 15)

Nuclear synthesis in the ejecta (Lattimer & Schramm 74)

- ⇒ Radio active decay of the r-process elements (Li-Paczynski 98)
- Electromagnetic counterpart = kilonova/macronova (Kulkarni 05, Metzger & Berger 12, Kasen et al. 13, Barnes & Kasen 13, Tanaka & Hotokezaka 13, Berger et al. 13, Tanvir et al. 13, Takami et al. 14, Kisaka et al. 15)

Overview of Black Hole (BH) – Neutron Star (NS) merger

Q: Tidal disruption or not? (Mass ratio, BH spin, EOS of NS)

Mass ejection due to tidal torque (Kyutoku et al. 13, Kyutoku et al. 15)

A part of the tidal tail \Rightarrow Crescent like shape of the ejceta

This dynamical ejecta is a primary component in BH-NS mergers.

What's else?

► Neutrino driven wind (Qian & Woosley 96)

$$\dot{M} \approx 4.5 \times 10^{-3} L_{\bar{\nu}_e, 53}^{5/3} \epsilon_{\bar{\nu}_e, 10}^{10/3} R_6^{5/3} M_{2.7}^{-2} M_{\odot}/\text{s},$$

► Disk wind due to the nuclear recombination/viscous heating (Fernandez & Metzger 13)

 $M_{ej} \sim 0.1 M_{disk}$ for the viscous timescale (e.g., O(1)s)

► Magnetic-field effect (Liu et al. 08, Etienne et al. 12a, 12b, Paschalidis et al 14)

 λ_{MRI}

But, the role of the B-fields is still unclear during the merge. Why? Because the wavelength of the unstable mode is too short.

What if you miss it? ⇒ Turbulence is not developed.

Difficulty in MHD simulation

- ► A short wavelength mode has a high growth rate.
- ► Turbulent eddies are killed by a numerical viscosity. Mandatory to do an in-depth resolution study, which is lacking in a bunch of the simulations.
- ► High resolution; $\Delta x=120$ m, $N=1028^3$ (K; 32,768 cores)
- ► Middle resolution ; $\Delta x = 160$ m, N=756³ (XC30; 4,096 cores)
- ► Normal resolution ; $\Delta x = 202$ m, N=612³ (XC30; 4,096 cores)
- ► Low resolution ; $\Delta x = 270$ m, N=448³ (FX10 ; 3,456 cores) c.f. highest-res. in BH-magnetized NS simulation is $\Delta x \approx 260$ m, N = 140³

Fiducial model

- ► EOS: APR4 ($M_{max} \approx 2.2 M_{\odot}$), $M_{NS} = 1.35 M_{\odot}$
- ► M_{BH}/M_{NS}: 4
- ► BH spin : 0.75
- ► B_{max} : 10¹⁵G

Outline of numerical relativity-MHD code (Kiuchi et al. 12, 14)

- ▶Time step is limited by the speed of light
- ▶ Interpolation of B-fields on the refinement boundary is non-trivial: Flux conservation and Div B = 0 (KK et al. 12, Balsara 01)
- ▶ Larger B/F
- ►MPI communication rule is complicated, e.g., refinement boundary
- ► Good scaling up to about 80,000 cores (Execution performance 12-13%)

Japanese supercomputer K@AICS

▶ Total peak efficiency is 10.6 PFLOPS (663,552 cores)

This study is one of the main subject of the HPCI strategic program field 5.

 $t = 0.2270 \, ms$


```
10<sup>12</sup> g/cm<sup>3</sup>
10<sup>11</sup> g/cm<sup>3</sup>
10<sup>10</sup> g/cm<sup>3</sup>
10<sup>9</sup> g/cm<sup>3</sup>
```

 $t = 0.0000 \, \text{ms}$

10^{14.0} G 10^{14.5} G 10^{15.0} G

Mass ejection

Mass accretientaranassnevollation

Torus mass evolution

- t ≤10ms ⇒ Dynamical mass ejection (Kyutoku et al. 15)
- ▶ 10ms ≤ t ⇒ New component = torus wind
- ► Mass accretion onto the BH for 10-20ms ⇒ ≈ 0.02M_o
- ► Disk mass decreases by ≈0.05M_o for 10-20ms In the higher-resolution run,
- ▶ The launch time \Rightarrow earlier, The amount of the wind \Rightarrow larger, The mass accretion rate \Rightarrow smaller in the higher-res. runs.

B-field amplification

Evolution of B-field energy

Magneto Rotational Instability (MRI) (Balbus & Hawley 91); Powerful amplification mechanism of the B-fields. If $d\Omega/dr<0$, it turns on and amplifies the B-fields exponentially.

- → Turbulent eddies are produced
- → Physical viscosity
- t ≤10ms ⇒ highly dynamical phase (winding / stretching)
- ▶ 10ms ≤ t ⇒ Magneto Rotational Instability activates($\lambda_{MRI, fastest}$ = B/(4 π ρ)^{1/2}2 π / Ω)
- ► Linear growth rates are approximately converged; 0.07-0.08 Ω (Non-axisymetric MRI, $\lambda_{MRI, fastest}/\Delta x \ge 10$)
- ►Well-resolved turbulent eddies might play an important role.

Structure of the torus wind Density of a merdional plane at ≈50ms

- \triangleright u_t = -1 is approximately parabolic in the vicinity of the z-axis
- ►Effective potential : $ln(-u_t) \rightarrow -GM_{BH}/(R^2+z^2)^{1/2} + l^2/2R^2$ (constant specific angular momentum I)
- \Rightarrow u_t=-1 becomes parabolic (Hawley & Krolik 06, Blandford & Begelman 99) Formation of a region with u_t<-1 is natural consequence for the accretion torus formation in the BH-NS mergers.

Mechanism of the injection into a region with $u_{\rm t} <$ - 1

P/P_{mag} on a merdional plane at ≈20ms

Thermal component of the internal energy on a merdional plane at ≈50ms

- ► Magnetic pressure is not the main agent of the injection.
- ightharpoonup A hot region in the vicinity of the BH \Rightarrow Steep pressure gradient The fluid elements are accelerated radially and become unbound.

Mechanism of the injection into a region with $u_t < -1$

- ▶The high BH spin is a key ingredient as well.
- ▶Spin up $\chi : 0.75 \Rightarrow \approx 0.90$
- ▶Inner Stable Circular Orbit radius ≈ 2.32 $GM_{BH}/c^2 \Rightarrow$ The accretion onto the BH is suppressed.
- ▶ The high BH spin prevents the fluid elements from being accreted onto the BH.
- \Rightarrow They tend to stay in the vicinity of the BH.
- ⇒ Steep pressure gradient (Shibata et al. 07)

The point : high BH spin is necessary for tidal disruption of realistic BH-NS binaries (mass ratio ≥ 7).

Mechanism to enhance the thermal pressure

Energy spectrum of the turbulent flow

 $k=|\mathbf{k}|$

Step 1. Choose a cubic region Step 2. δ vⁱ = vⁱ - <vⁱ> <> Time average Step 3. R_{ij} (\mathbf{r})= $< \delta$ vⁱ (\mathbf{x} + \mathbf{r}) δ vⁱ (\mathbf{x})> Step 4. φ_{ij} (\mathbf{k}) = $\iint R_{ij}$ (\mathbf{r})e^{-ik·r}d \mathbf{r} Step 5. $E(\mathbf{k}) = \iint \varphi_{ii}(\mathbf{k}) d\Omega_{\mathbf{k}}$

Energy spectrum of the turbulent flow

- ►The spectrum extends to smaller scales in the higher-res. runs

 ⇒ The energy injection at a smaller scale where MRI develops.
- ▶The spectrum amplitude is higher in the higher-res. runs.

In the turbulent state, the energy dissipation rate is $\sim \delta \, v^3/l_{\rm edd}$ \Rightarrow Energy spectrum indicates the viscosity becomes higher in the higher-resolution runs.

Mechanism to enhance the thermal pressure

▶The realistic high viscosity enhances the mass accretion inside the torus and converts the mass accretion energy to thermal energy efficiently.

Formation of the funnel wall and magnetosphere

- ▶Energy is transported in a region with u_t<-1
- ▶Funnel wall formation by the torus wind
- ▶Torus wind ⇒ Coherent poloidal B-field ⇒ Formation of a low plasma beta region ⇒ Formation of the magnetosphere

Blandford-Znajek meshanism = Extraction of the BH rotational energy via B-fields

- Dutgoing Poynting flux is as high as ≈2 × 10⁴⁹ erg/s ⇒ It could be a central engine for the SGRBs with low luminosity (Lee & Ramires-Ruiz 07)
- ▶ Jet could be naturally collimated by the funnel wall once it launches.

Implications of the torus wind

- ► Nucleosynthesis in the BH-NS merger Electron fraction of the dynamical ejecta is ≤ 0.1
- ⇒ Reproduce the third peak of the solar abundance

- ▶ Torus wind is hot \Rightarrow Different Ye distribution from that for the dynamical component composed of the non-hot neutron rich matter.
- ▶ Broad distribution of the Ye could reproduce the solar abundance (BH-NS: Just et al. 15, NS-NS: Sekiguchi et al. 15, Wanajo et al. 14)

Implications of the torus wind

Macronova/kilonova model in the BH-NS merger (Li-Paczynski 98)

- \blacktriangleright Dynamical ejecta $\sim 10^{-6}$ - $10^{-1}M_{\odot}$ (Hotokezaka et al. 13, Kyutoku et al. 15)
- ▶ Thermal driven torus wind $M_{\rm ej}\sim 0.06 M_{\odot}$ ($\sim 0.5 M_{\rm disk}$), but only one point in the parameter spaces

Systematic study should be done.

Caveat and summary

NR simulations of the BH-magnetized NS mergers on K

- ▶ Resolution study is essential.
- ▶ Tidal disruption \Rightarrow Accretion torus formation \Rightarrow Torus wind launch \Rightarrow Funnel wall formation \Rightarrow Magnetosphere formation in a self-consistent simulation
- ▶Turbulent eddies are the agent to drive the mass accretion and to convert the kinetic energy to thermal energy

<u>Implications</u>

- ► Central engine of the SGRBs
- ▶ The nucleosynthesis of the r-process elements
- ▶ The radioactively-powered transient emission