
モンテカルロ殻模型計算のGPGPUへの適用について	

富樫智章A,	 清水則孝A,	 宇都野穣A,B,	 阿部喬C,	 大塚孝治A,C	

東大CNSA,	 JAEAB,	 東大理C	

HPCI戦略プログラム分野5「物質と宇宙の起源と構造」	
全体シンポジウム	 	
秋葉原	 2014.3.3	

	

・ エキサスケールコンピューティングでは演算加速器(accelerator)を大々的に用いた	
	 	 	 	 計算が有望視されている	
　 →	 現状でもGPU	 (NVIDIA	 K20X)	 を用いたTitan	 や	 MIC	 (Intel	 Xeon	 Phi	 31S1P)	 を用いた	
	 	 	 	 	 	 	 	 	 	 Tianhe-‐2	 がスパコンTop500の1,2位を占めている。	

背景と目的	

・ モンテカルロ殻模型計算の現状:	 京による大規模計算で5主殻計算が行われ、	
　　　　　　　　　　　　　　　　　　　　　　6主殻計算が行われつつある。	

エキサスケールに向けて、さらに7-‐8主殻による大規模計算を目指す。	

従って、次のエキサスケールに向けて演算加速器(accelerator)により計算効率
が飛躍的に向上するようなアルゴリズム開発やチューニングが望まれる。	
	

後述するようにモンテカルロ殻模型計算は行列積演算がボトルネックとなっており、
単純な演算で高い性能が出るGPGPUに向いていると考えられる。	
　⇒	 	 今回はGPGPU向けにチューニングを行い性能を確認することが目的	

Rank Computer Accelerator/Co-Processor Cores
1 TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P 2736000

2 Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x 261632

3 BlueGene/Q, Power BQC 16C 1.60 GHz, Custom 0

4 K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect 0

5 BlueGene/Q, Power BQC 16C 1.60GHz, Custom 0

6 Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x 73808

7 PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P 366366

8 BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect 0

9 BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect 0

10 iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR 0

11 Cluster Platform SL390s G7, Xeon X5670 6C 2.930GHz, Infiniband QDR, NVIDIA K20x 57834

12 NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 100352

13 Atipa Visione IF442 Blade Server, Xeon E5-2670 8C 2.600GHz, Infiniband FDR, Intel Xeon Phi 5110P 171720

14 SGI ICE X, Xeon E5-2670 8C 2.600GHz, Infiniband FDR 0

15 BlueGene/Q, Power BQC 16C 1.60GHz, Custom 0

November	 2013	 |	 TOP500	 Supercomputer	 Sites	
(hVp://www.top500.org/lists/2013/11/)	
より引用	

GPGPUの特徴	

NVIDIA	 Developer	 Zone	 (hVps://developer.nvidia.com/cuBLAS)	 より引用	

☆GPUは演算量の多い単純な演算を行うのに適している	
	 	 	 	 ⇔	 複雑な条件分岐が多いアルゴリズムを処理するのは不得意	

※	 CPU(ホスト側)	 ⇆	 GPU間のデータ転送速度(メモリバンド幅)はあまり大きくないため、	
	 	 	 	 	 データ転送回数が多くなると性能が落ちてしまう。	

モンテカルロ殻模型計算の概要	

全配位に対する行列要素	

H	 =	
対角化	

次元数 ~	 O(1010)	

通常の殻模型計算	

モンテカルロ的+変分計算
で基底を選択 	

H	 ~	
対角化	

次元数 ~	 O(100)	

モンテカルロ殻模型計算	

by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)

射影(projecaon)による	
スピンJ	 ・ パリティπ状態の回復 	

by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)

PMK
JπΦ(q, J π ,M,K) =

エネルギー変分で求める	 	

殻模型軌道(0s,0p,…)の生成演算子	

Review:	 T.	 Otsuka	 ,	 M.	 Honma,	 T.	 Mizusaki,	 N.	 Shimizu,	 Y.	 Utsuno,	
Prog.	 Part.	 Nucl.	 Phys.	 47,	 319	 (2001)	

※	 Hamiltonian行列要素の計算が計算時間の大部分を占める(~95%)	

Hamiltonian行列要素は密度行列 ρ	 と相互作用行列との行列演算となる	

by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)

where tl1l2 and v̄l1l2,l3l4 represent the one- and two-body parts of the matrix elements for single-
particle bases in Hamiltonian, respectively, and ρll′(q′, q) is the component of theNs×Ns density
matrix ρ(q′, q):

ρ(q′, q) = D(q) ·
(

D(q′)† ·D(q)
)−1

·D(q′)†. (4)

The dots in Eqs. (3) and (4) mean the matrix multiplication. This notation is also used in the
following.

Since a general Slater determinant of Eq. (2) does not necessarily possess the symmetries
that the Hamiltonian has, the broken symmetries have to be restored by projecting the wave
function onto good quantum numbers. For instance, the total angular momentum is restored
from |Φ(q)〉 by performing a three-dimensional integration over the Euler angles [6]. Practically,
a numerical integration with the weight function W for Euler angles is carried out for the norm
matrix N(q′, q) and the Hamiltonian matrix H(q′, q). Hence, for the total angular-momentum
projection, Eq. (3) becomes

N(q′, q) =
Nm
∑

r

W rN0(q′, qr), H(q′, q) =
Nm
∑

r

W rN0(q′, qr)H0(q′, qr),

N0(q′, qr) ≡ det
(

D(q′)† ·D(qr)
)

,

H0(q′, qr) ≡
Ns
∑

l1l2

tl1l2 ρl2l1(q
′, qr) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr), (5)

where Nm is the number of mesh points in a numerical integration, qr denotes that the state
|Φ(q)〉 is rotated by the Euler angle corresponding to the mesh point r, and W r is the value of
the weight function at the mesh point r.

The numerical calculation directly using Eq. (5) is inefficient because v̄l1l2,l3l4 is very sparse.
The conservation of the z component of the angular momentum j leads to v̄l1l2,l3l4 = 0 unless
jz(l1) + jz(l2) = jz(l3) + jz(l4) is satisfied. Hence, we convert the sparce matrix v̄l1l2,l3l4 into
the block-dense matrix by using this conservation. First, the density-matrix elements ρll′(q′, qr)
are grouped according to ∆m ≡ jz(l′) − jz(l), and the set of (l, l′) having a common ∆m is
indexed by k = 1, 2, ..., N∆m as ρ̃ (∆m, q′, qr)k. In a similar way, the two-body matrix elements
v̄l1l2,l3l4 are categorized according to ∆m13 ≡ jz(l1) − jz(l3) and ∆m24 ≡ jz(l2) − jz(l4) as
ṽ (∆m13,∆m24)k′k, where the sets of (l1, l3) and (l2, l4) having ∆m13 and ∆m24, respectively,
are indexed by k′ and k. Then, the two-body part of H0(q′, qr) in Eq. (5) becomes

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr)

=
1

2

∑

∆m13∆m24

∑

k′k

ρ̃ (∆m13, q
′, qr)k′ ṽ (∆m13,∆m24)k′k ρ̃ (∆m24, q

′, qr)k

=
1

2

∑

∆m

∑

k′k

ρ̃ (−∆m, q′, qr)k′ ṽ (−∆m,∆m)k′k ρ̃ (∆m, q′, qr)k, (6)

where the last equality is derived from the necessary condition for v̄l1l2,l3l4 being non-zero:
jz(l1) + jz(l2) = jz(l3) + jz(l4), i.e., ∆m13 = jz(l1) − jz(l3) = −(jz(l2) − jz(l4)) = −∆m24 ≡
−∆m. Since the density matrix ρ̃(∆m, q′, qr) and the two-body matrix ṽ(−∆m,∆m) for a
given ∆m are one- and two-dimensional arrays, respectively, Eq. (6) is regarded as a t(vector)
× (matrix) × (vector) operation to be tρ̃ · ṽ · ρ̃, where the indeces are omitted for simplicity,

by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)

Hamiltonian行列要素の計算	

密度行列:	

Hamiltonian行列要素:	

軌道数Ns	 ×	 粒子数Nf	 の行列	

射影前の基底:	

射影後の基底：	

by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)

PMK
Jπ 有限角度 の3次元回転を行った	

基底の重ね合わせ(角分点Nm個)に対応	

1体相互作用行列要素	

by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)

2体相互作用行列要素	

重み関数値	

H (!q ,q) = WrH (!q ,qr)
r

Nm

∑

Ωr

2体相互作用部分の演算量が一番多い	

where tl1l2 and v̄l1l2,l3l4 represent the one- and two-body parts of the matrix elements for single-
particle bases in Hamiltonian, respectively, and ρll′(q′, q) is the component of theNs×Ns density
matrix ρ(q′, q):

ρ(q′, q) = D(q) ·
(

D(q′)† ·D(q)
)−1

·D(q′)†. (4)

The dots in Eqs. (3) and (4) mean the matrix multiplication. This notation is also used in the
following.

Since a general Slater determinant of Eq. (2) does not necessarily possess the symmetries
that the Hamiltonian has, the broken symmetries have to be restored by projecting the wave
function onto good quantum numbers. For instance, the total angular momentum is restored
from |Φ(q)〉 by performing a three-dimensional integration over the Euler angles [6]. Practically,
a numerical integration with the weight function W for Euler angles is carried out for the norm
matrix N(q′, q) and the Hamiltonian matrix H(q′, q). Hence, for the total angular-momentum
projection, Eq. (3) becomes

N(q′, q) =
Nm
∑

r

W rN0(q′, qr), H(q′, q) =
Nm
∑

r

W rN0(q′, qr)H0(q′, qr),

N0(q′, qr) ≡ det
(

D(q′)† ·D(qr)
)

,

H0(q′, qr) ≡
Ns
∑

l1l2

tl1l2 ρl2l1(q
′, qr) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr), (5)

where Nm is the number of mesh points in a numerical integration, qr denotes that the state
|Φ(q)〉 is rotated by the Euler angle corresponding to the mesh point r, and W r is the value of
the weight function at the mesh point r.

The numerical calculation directly using Eq. (5) is inefficient because v̄l1l2,l3l4 is very sparse.
The conservation of the z component of the angular momentum j leads to v̄l1l2,l3l4 = 0 unless
jz(l1) + jz(l2) = jz(l3) + jz(l4) is satisfied. Hence, we convert the sparce matrix v̄l1l2,l3l4 into
the block-dense matrix by using this conservation. First, the density-matrix elements ρll′(q′, qr)
are grouped according to ∆m ≡ jz(l′) − jz(l), and the set of (l, l′) having a common ∆m is
indexed by k = 1, 2, ..., N∆m as ρ̃ (∆m, q′, qr)k. In a similar way, the two-body matrix elements
v̄l1l2,l3l4 are categorized according to ∆m13 ≡ jz(l1) − jz(l3) and ∆m24 ≡ jz(l2) − jz(l4) as
ṽ (∆m13,∆m24)k′k, where the sets of (l1, l3) and (l2, l4) having ∆m13 and ∆m24, respectively,
are indexed by k′ and k. Then, the two-body part of H0(q′, qr) in Eq. (5) becomes

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr)

=
1

2

∑

∆m13∆m24

∑

k′k

ρ̃ (∆m13, q
′, qr)k′ ṽ (∆m13,∆m24)k′k ρ̃ (∆m24, q

′, qr)k

=
1

2

∑

∆m

∑

k′k

ρ̃ (−∆m, q′, qr)k′ ṽ (−∆m,∆m)k′k ρ̃ (∆m, q′, qr)k, (6)

where the last equality is derived from the necessary condition for v̄l1l2,l3l4 being non-zero:
jz(l1) + jz(l2) = jz(l3) + jz(l4), i.e., ∆m13 = jz(l1) − jz(l3) = −(jz(l2) − jz(l4)) = −∆m24 ≡
−∆m. Since the density matrix ρ̃(∆m, q′, qr) and the two-body matrix ṽ(−∆m,∆m) for a
given ∆m are one- and two-dimensional arrays, respectively, Eq. (6) is regarded as a t(vector)
× (matrix) × (vector) operation to be tρ̃ · ṽ · ρ̃, where the indeces are omitted for simplicity,

where tl1l2 and v̄l1l2,l3l4 represent the one- and two-body parts of the matrix elements for single-
particle bases in Hamiltonian, respectively, and ρll′(q′, q) is the component of theNs×Ns density
matrix ρ(q′, q):

ρ(q′, q) = D(q) ·
(

D(q′)† ·D(q)
)−1

·D(q′)†. (4)

The dots in Eqs. (3) and (4) mean the matrix multiplication. This notation is also used in the
following.

Since a general Slater determinant of Eq. (2) does not necessarily possess the symmetries
that the Hamiltonian has, the broken symmetries have to be restored by projecting the wave
function onto good quantum numbers. For instance, the total angular momentum is restored
from |Φ(q)〉 by performing a three-dimensional integration over the Euler angles [6]. Practically,
a numerical integration with the weight function W for Euler angles is carried out for the norm
matrix N(q′, q) and the Hamiltonian matrix H(q′, q). Hence, for the total angular-momentum
projection, Eq. (3) becomes

N(q′, q) =
Nm
∑

r

W rN0(q′, qr), H(q′, q) =
Nm
∑

r

W rN0(q′, qr)H0(q′, qr),

N0(q′, qr) ≡ det
(

D(q′)† ·D(qr)
)

,

H0(q′, qr) ≡
Ns
∑

l1l2

tl1l2 ρl2l1(q
′, qr) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr), (5)

where Nm is the number of mesh points in a numerical integration, qr denotes that the state
|Φ(q)〉 is rotated by the Euler angle corresponding to the mesh point r, and W r is the value of
the weight function at the mesh point r.

The numerical calculation directly using Eq. (5) is inefficient because v̄l1l2,l3l4 is very sparse.
The conservation of the z component of the angular momentum j leads to v̄l1l2,l3l4 = 0 unless
jz(l1) + jz(l2) = jz(l3) + jz(l4) is satisfied. Hence, we convert the sparce matrix v̄l1l2,l3l4 into
the block-dense matrix by using this conservation. First, the density-matrix elements ρll′(q′, qr)
are grouped according to ∆m ≡ jz(l′) − jz(l), and the set of (l, l′) having a common ∆m is
indexed by k = 1, 2, ..., N∆m as ρ̃ (∆m, q′, qr)k. In a similar way, the two-body matrix elements
v̄l1l2,l3l4 are categorized according to ∆m13 ≡ jz(l1) − jz(l3) and ∆m24 ≡ jz(l2) − jz(l4) as
ṽ (∆m13,∆m24)k′k, where the sets of (l1, l3) and (l2, l4) having ∆m13 and ∆m24, respectively,
are indexed by k′ and k. Then, the two-body part of H0(q′, qr) in Eq. (5) becomes

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr)

=
1

2

∑

∆m13∆m24

∑

k′k

ρ̃ (∆m13, q
′, qr)k′ ṽ (∆m13,∆m24)k′k ρ̃ (∆m24, q

′, qr)k

=
1

2

∑

∆m

∑

k′k

ρ̃ (−∆m, q′, qr)k′ ṽ (−∆m,∆m)k′k ρ̃ (∆m, q′, qr)k, (6)

where the last equality is derived from the necessary condition for v̄l1l2,l3l4 being non-zero:
jz(l1) + jz(l2) = jz(l3) + jz(l4), i.e., ∆m13 = jz(l1) − jz(l3) = −(jz(l2) − jz(l4)) = −∆m24 ≡
−∆m. Since the density matrix ρ̃(∆m, q′, qr) and the two-body matrix ṽ(−∆m,∆m) for a
given ∆m are one- and two-dimensional arrays, respectively, Eq. (6) is regarded as a t(vector)
× (matrix) × (vector) operation to be tρ̃ · ṽ · ρ̃, where the indeces are omitted for simplicity,

••
•�

••
•�

0� +1�+2�&1�&2�

0�

&1�
&2�

+1�
+2�

0�

0�

v

Δm =

t ρ •� •� ρ

••
•�

••
•�

0�

0�

v

t ρ (i) •�
•� ρ (1),, ρ (i),

θ
(i)v ⋅θ

ボトルネック部分への対応	

疎行列	

行列	 ×	 行列	 ×	 行列	

密ブロック行列	

ベクトル	 ×	 行列	 ×	 ベクトル	 スピンJ	 ・ パリティπ射影では角分点
ごとに計算を行う	

ある程度の数の角分点の密度行列を
まとめて一つの行列 として、	
2体相互作用行列との行列積を計算	

θ

行列積をBLASにより計算(従来法)	

Y.	 Utsuno,	 N.	 Shimizu,	 T.	 Otsuka,	 T.	 Abe,	 	
Comp.	 Phys.	 Comm.	 184,	 102	 (2013)	 行列積をcuBLASでGPUにより計算	

H (!q ,q) = WrH (!q ,qr)
r

Nm

∑

計算内では不変な行列	

GPUによる行列積演算	

0"
100"
200"
300"
400"
500"
600"
700"
800"
900"
1000"
1100"
1200"
1300"
1400"
1500"
1600"
1700"

,14",13",12",11",10",9" ,8" ,7" ,6" ,5" ,4" ,3" ,2" ,1" 0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"

di
m
en

sio
n"
of
"su

bm
at
rix
�

Δm�

Nshell=7"

Nshell=6"

Nshell=5"

Nshell=4"

主殻(Nshell)ごとの2体相互作用密ブロック行列の次元数	

NVIDIA	 Developer	 Zone	 (hVps://developer.nvidia.com/cuBLAS)	 より引用	

cuBLASでは大きな次元での
行列積の演算性能が飛躍的
に向上	

cuBLASを用いることで	
より大きな主殻(Nshell)での
性能が向上することが期待
できる	

D(q '), D(q)が与えられる	

1	 |	 2	 |	 3	 |	 …	 |	 ib	 |	 …	 	 	 	 	 	 	 	 	 	 |	 jb	 |	 …	 |	 Nm	

角分点のメッシュ:	

(1),	 (2),	 …	 (i),	 …	 (Nb)のループ	

	 　　　 から(i)	 番目の回転角に対応した　　　 を生成し	D(q) D(q(i))

D(q(i)) ⋅ (D("q)† ⋅D(q(i)))−1
NbNs	

(1)	

(i)	
θ tmp

θ tmp

配列　　　　 をGPUに転送	 θ tmp, D(!q)†

1.	 　　　　　　　 を計算し、密行列積に対応した形に置換:	 	 	 	 	 	 	 	 	 θ tmp ⋅D("q)† θ = (ρ (1),…, ρ (i),…, ρ (Nb))

2.	 Hamiltonian行列要素 　を計算:	 	 	 	 	 	 	 	 	 t ⋅ θ()
(i) t ρ (i) ⋅ v ⋅ θ()

(i)
H 0 (!q ,q(i))

計算結果 をホスト側に転送	 	 	 	 	 	 	 	 	 H 0 (!q ,q(1)),…,H 0 (!q ,q(i)),…,H 0 (!q ,q(Nb))

(GPU	 compuang)	

まで計算を行い　 　 に保存	

+	

フローチャート	

1体演算子	 2体演算子	

※相互作用のデータ　　　は予めGPUに	
　 転送	

t , v

OpenMPで	
スレッド並列化	

※配列をまとめて一度に転送	

ベンチマークテスト	

16O	 (陽子数:8,	 中性子数:8),	 	 スピン・パリティ:	 0+	
主殻(Nshell)	 :	 4,	 5,	 6,	 7	
相互作用:	 JIPS16	 (A.M.Shirokov	 et	 al.,	 PLB644,	 33	 (2007))	
　　→　5基底のHamiltonian行列要素の計算(15要素)を行い、	
　　　　	 CPUのみの場合とGPUを用いた場合とで性能を比較	

対象とする原子核	

Nshell Ns Harmonic-Oscillator Single-Particle Orbits
4 40 (spdsfp) ≡ (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6(0d3/2)4(1s1/2)2

(0f7/2)8(0f5/2)6(1p3/2)4(1p1/2)2

5 70 (spdsfp) + (gds),

(gds) ≡ (0g9/2)10(0g7/2)8(1d5/2)6(1d3/2)4(2s1/2)2

6 112 (spdsfp) + (gds) + (hfp),

(hfp) ≡ (0h11/2)12(0h9/2)10(1f7/2)8(1f5/2)6(2p3/2)4(2p1/2)2

7 168 (spdsfp) + (gds) + (hfp) + (igds),

(igds) ≡ (0i13/2)14(0i11/2)12(1g9/2)10(1g7/2)8(2d5/2)6(2d3/2)4(3s1/2)2

Table 1: The number of single-particle states Ns and the set of harmonic-oscillator single-
particle orbits are listed for each major shell Nshell. Each harmonic-oscillator orbit is described
as (nlj)2j+1, where n, l, and j denote the number of nodes, the orbital angular momentum as
the spectroscopic notation, and the total angular momentum, respectively, and has the different
(2j + 1)’s z components of total angular momentum j.

Figure 3: The dimensions of the submatrices grouped as ∆m of the two-body matrix elements
ṽ are plotted for each major shell Nshell.

4.3 Results and Analyses

We have measured the elapsed time to compute the two-body part in Hamiltonian matrix
elements including the return of data from the GPU device into the host and evaluated the
performance in FLOPS by using the inverse of this elapsed time in 1/s. In the left side of
Fig. 4, this performance of the GPU computing in FLOPS is compared with that of the single-
threaded process of the CPU for each major shell Nshell. As seen here, the GPU computing
achieves more than forty times the performance of a single-threaded process of the CPU in the
case of Nshell = 7. In the right side of Fig. 4, the performance of the GPU in FLOPS for each
major shell Nshell is shown and it is found that the execution efficiency reaches about 50% of
the theoretical peak performance of 1.31 TFLOPS for the computation of Nshell = 7. In this
computaion, the performance of the single-threaded process of the CPU changes slightly about
from 10 to 15 GFLOPS with the increase of the major shell and that means the saturation of
the perfomance. Otherwise, for the GPU computing, the performance is improved gradually
with the increase of the major shell.

計算環境	

-‐	 CPU:	 AMD	 Opteron	 6274	 16	 core	 (理論ピーク性能:17.6	 GFLOPS/thread)	 x	 1	
-‐	 GPU:	 NVIDIA	 Tesla	 K20X	 (理論ピーク性能(倍精度):	 1.31	 TFLOPS)	 x	 1	
-‐	 コンパイラ:	 PGI	 Accelerator	 Fortran	 13.10	 (NVIDIA	 CUDA	 5.0	 使用オプション)	
-‐	 1ノード	

2体相互作用部分の計測	

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

4" 5" 6" 7"

1G
PU

"G
FL
O
PS
/1
CP

U
"G
FL
O
PS
�

Nshell�

28body"part"in"Hamiltonian"matrix"elements"

0"

100"

200"

300"

400"

500"

600"

700"

4" 5" 6" 7"

1G
PU

"G
FL
O
PS
�

Nshell�

26body"part"in"Hamiltonian"matrix"elements"

→	 2体相互作用部分についてFlops数を	
　 GPUとCPU	 1	 threadで比較(GPU/CPU	 1thread)	

より大きな主殻(Nshell)でGPUは性能を発揮	
→	 Nshell	 =	 6:	 ~30倍,	 	 Nshell	 =	 7:	 ~42倍	

→	 2体相互作用部分についてのGPUのFlops数	

Nshell	 =	 7	 で理論ピーク性能の~50%	
(~600	 GFlops/1.31	 TFlops)	

Hamiltonian行列要素全体での計測	

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

4" 5" 6" 7"

1C
PU

"-
m
e/
1C

PU
"w
ith

"1
GP

U
"-
m
e�

Nshell�

Inversion"of"-me"in"1/sec�

Total"

ρ"

2body"

→	 Hamiltonian行列要素計算にかかるelapsed	 ameの逆数を	
　 GPUとCPU	 1	 threadで比較(GPU+CPU	 1thread/CPU	 1thread)	

全体の計算ではNshell	 =	 7で	 ~27倍の性能	

スレッド並列との併用	

0"

5"

10"

15"

20"

25"

30"

35"

40"

4" 5" 6" 7"

1"
"C
PU

"to
ta
l"1
m
e/
to
ta
l"1
m
e�

Nshell�

Inversion"of"total"1me"in"1/sec�

8C"

1C+GPU"

8C+GPU"

OpenMP	 8	 threadと併用して、全体の計算にかかるelapsed	 ameの逆数
を取り、CPU	 1	 threadの場合との性能を比較	

CPUのみ(8thread)	

CPU(1thread)	 +	 GPU	

CPU(8thread)	 +	 GPU	

Nshell	 =	 4の場合はCPU	 8threadとほぼ性能が変わらない	
Nshellが大きくなるにつれて大きく性能が向上(OpenMP+GPU,	 Nshell	 =	 7で~35倍)	 	

実時間計測について	

1行列要素当たりの計算にかかった実時間を表示	

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"
100"
110"
120"
130"

4" 5" 6" 7"

Se
c�

Nshell�

Total"7me"in"sec�

8C"

1C+GPU"

8C+GPU"

CPUだけではNshellが増えるにつれて指数関数的に計算時間が増加	
GPUを用いると計算時間の増加をある程度抑えることができる	

CPUとGPUの計算時間の内訳について	

Nshell	 Total	 (sec)	 CPU	 (sec)	 GPU	 (sec)	

4	 1.80	 0.45	 1.35	

5	 3.51	 0.70	 2.81	

6	 7.47	 0.77	 6.70	

7	 19.21	 1.16	 18.05	

OpenMP	 8	 thread	 +	 GPUでの計算時間の内訳 (1行列要素当たり)	

CPUでの計算時間はGPUでの計算時間と比べて小さくオーバーヘッドの
問題は(今のところ)起こらない	

※一部をCPUで計算している密度行列 ρ	 は粒子数が多くなるにつれて	
	 	 	 	 計算時間が増えるため、質量数が多くなると考慮する必要があるかもしれない	

・ モンテカルロ殻模型計算では、行列積演算部分がボトルネックと	
	 	 	 	 なるためGPGPUにより性能が向上させることができる。	
	
・ 特にNshellが大きくなり、扱う行列の次元が大きくなるとより性能を	
	 	 	 	 発揮しやすくなる。 →	 今後の大規模計算に有利になると考えられる	

まとめと展望	

今後の現実的な計算に向けて…	

・ 多GPU,	 多ノード用の計算コードを実装していく。	
	
・ 現状では理論ピーク性能の50%程度なので、	
　さらにGPUの性能を引き出すチューニングを試みる。	
	 	 	 	 	 	 	 例)	 Dynamic	 Parallelism	

