格子QCDによる三体力

Takumi Doi (Nishina Center, RIKEN)

- Motivation
- 3NF in Lat QCD:
 - Framework & comput. algorithm
- Results for 3NF
- Toward physical point calc on K:
 - Code tuning for 3NF & 2BF
- Summary

2014/03/03

HPCII戦略プログラム分野5全体シンポジウム @ 秋葉原

Motivation: Nuclear Physics and Astrophysics from Lat QCD

Three-nucleon forces (3NF)

• Essential component for EoS at high density matter

<u>3NF</u> also play significant roles in

B.E. of light nuclei

Saturation point of nuclear matter

Neutron rich nuclei
 Nucleosynthesis

Neutron star Merger SuperNova

(R.Spero)

3NF from NBS wave function [HAL QCD method]

• Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r},\vec{\rho}) = \langle 0 N(\vec{x}+\vec{r}) N(\vec{x}) N(\vec{x}+\vec{r}/2+\vec{\rho}) 3N \rangle$

NBS ← → Phase shift even in multi-particle system

(non-rela limit)

S.Aoki et al., PRD88(2013)014036

$$(E - H_0^r - H_0^\rho)\psi(\vec{r}, \vec{\rho}) = \left[\sum_{i < j} V_{ij}(\vec{r}_{ij}) + V_{3NF}(\vec{r}, \vec{\rho})\right]\psi(\vec{r}, \vec{\rho})$$

• NBS is obtained by 6pt. correlator

Obtain 3NF through

 $G(\vec{r},\vec{\rho},t-t_0) = \sum_{\vec{x}} \langle 0|N(\vec{x}+\vec{r},t)N(\vec{x},t)N(\vec{x}+\vec{r}/2+\vec{\rho},t)\overline{NNN}(t_0)|0\rangle$

by 2N calc

In practical calculation, we employ time-dependent HAL QCD method

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

Challenge in multi-baryons on the lattice

Enormous computational cost for correlators

- # of Wick contraction (permutations) $\sim [(\frac{3}{2}A)!]^2$
- # of color/spinor contractions $\sim 6^A \cdot 4^A$ or $6^A \cdot 2^A$
 - Total cost:
 - $-^{2}H$: 9 x 144 = 1 x 10³
 - $-^{3}H$: 360 x 1728 = 6 x 10⁵
 - ${}^{4}\text{He}$: 32400 x 20736 = 7 x 10⁸

Improvement: T.Yamazaki et al., PRD81(2010)111504

[Unified contraction algorithm (UCA)]

TD, M.Endres, CPC184(2013)117

- Treat Wick/color/spinor contractions in a unified index space
 - → huge redundancies can be eliminated systematically
 - → permutation finished BEFORE any lattice calc
 - Significant improvement

 $\times 192$ for ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$, $\times 20736$ for ${}^{4}\mathrm{He}$, $\times 10^{11}$ for ${}^{8}\mathrm{Be}$ (x add'l. speedup)

See also subsequent works:

Detmold et al., PRD87(2013)114512 Gunther et al., PRD87(2013)094513

3NF calculation in Lat QCD

■ We fix the geometry of 3N (← this is not an approximation)

- $\bullet \rightarrow L^{(1,2)-pair} = L^{total} = 0 \text{ or } 2 \text{ only}$
- \rightarrow Bases are only three, labeled by ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}D_{1}$ for (1,2)-pair

3N-forces (3NF) on the lattice

T.D. et al. (HAL QCD Coll.) PTP127(2012)723

+ t-dep method updates etc.

Nf=2 clover (CP-PACS), 1/a=1.27GeV, L=2.5fm, $m\pi=1.1$ GeV, $m_N=2.1$ GeV

7

3N-forces (3NF) on the lattice

T.D. et al. (HAL QCD Coll.) PTP127(2012)723

+ t-dep method updates etc.

Nf=2 clover (CP-PACS), 1/a=1.27GeV, L=2.5fm, $m\pi=0.76-1.1$ GeV, $m_N=1.6-2.1$ GeV How about other geometries ? How about YNN, YYN, YYY ? ⁸

Toward physical point calc on K: code tuning status

- Physical quark mass configurations w/ L=9fm on K
 Configurations in generation
- Comput. of Potential = quark solver + measurement
 - For usual lattice studies, solver is dominant
 - For baryon forces, measurement is very costly
- Measurement
 - Three-nucleon forces (3NF)
 - Very expensive contraction cost, local comput.
 - Two-baryon forces (2BF)
 - Expensive contraction cost by many coupled channel systems
 - FFT cost by convolution (zero-mom projection for 2-body system)

<u>~x50 calc</u>

Development in FY2013

- Extensive refactoring of the code was performed
 - <u>Unified Contraction Algorithm (UCA)</u> for all 2BF: NN/YN/YY (in addition to 3NF)
 - Many FFT are bundled to reduce the latency
 - Better implementation of OpenMP & cache tuning/SIMD
 - (Found a lot of system bugs (FX10/Kei, BG/Q, SR16000, etc.))
 - 2BF: ~ x10-x100
 - 3NF: ~ x1000

speedup

3NF: efficiency = 18% @ 2048node

- Comput. Cost as of the end of FY2013
 - Target: 96^4 in 2048node
 - Measurement (2BF): ~5mins for 16x2 time slices
 - Solver: ~16mins w/o AMA, ~4mins(?) w/ AMA
 - − → measurement code becomes reasonably fast

- Hadron Interactions by 1st principle Lat calc
 - Bridging different worlds:
 Particle Physics / Nuclear Physics / Astrophysics
- Frontier: <u>Three-Nucleon Forces (3NF)</u>
 - NBS wave func. carries proper <u>phase shifts</u> !
 - Breakthrough in compt. cost [unified contraction algorithm]
 - Repulsive 3NF at short distance observed

• On the K computer:

UCA implemented for all 2BF & other code tunings

Measurement reasonably fast
 Physical quark mass calc