Lattice energy-momentum tensor from the Yang-Mills gradient flow

Hiroshi Suzuki

(Kyushu University)

2014/01/22 Lattice QCD at finite temperature and density @ KEK

- H.S., Prog. Theor. Exp. Phys. (2013) 083B03 [arXiv:1304.0533 [hep-lat]].
- M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa, H.S. (FlowQCD Collaboration), arXiv:1312.7492 [hep-lat]
- Hiroki Makino and H.S., work in progress

Lattice field theory and the energy-momentum tensor (EMT)

Lattice field theory

is best successful non-perturbative formulation of QFT

- ... keeps internal gauge symmetries exact
- ... but quite incompatible with spacetime symmetries (translation, rotation, SUSY, conformal, ...)
- Ward–Takahashi (WT) relation associated with translational invariance (*T_{μν}(x*): energy-momentum tensor (EMT))

$$\langle \partial_{\mu} T_{\mu\nu}(x) \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle = -\delta(x-y) \langle \partial_{\nu} \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle + \cdots$$

• Conservation law is a special case of this:

$$\langle \partial_{\mu} T_{\mu\nu}(x) \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle = 0, \quad \text{for } x \neq y, x \neq z, \dots$$

- Can we construct lattice EMT which reproduces these relations in $a \rightarrow 0$?
- If this is possible, the application will be vast (thermodynamics, viscosities, conformal field theory, dilaton physics, vacuum energy, ...)

- Invent somehow a lattice formulation that is invariant under the desired symmetry (in the present case, translation) as the lattice chiral symmetry on the basis of the Ginsparg–Wilson relation
- This is certainly ideal, but seems formidable for spacetime symmetries ... (eventually, SLAC derivative?)

• A general argument (Caracciolo et al. (1989)) tells that (assuming the hypercubic symmetry) a linear combination of following dim. 4 operators

$$T_{\mu\nu}(\mathbf{x}) = C_1 \left(\sum_{\rho} F^a_{\mu\rho} F^a_{\nu\rho} - \frac{1}{4} \delta_{\mu\nu} \sum_{\rho\sigma} F^a_{\rho\sigma} F^a_{\rho\sigma} \right) + C_2 \delta_{\mu\nu} \sum_{\rho\sigma} F^a_{\rho\sigma} F^a_{\rho\sigma} + C_3 \delta_{\mu\nu} \sum_{\rho} F^a_{\mu\rho} F^a_{\nu\rho}$$

is conserved for $a \rightarrow 0$

- We may determine ratios of these coefficients, C_2/C_1 and C_3/C_1 by imposing the conservation law
- Overall normalization C₁ should be fixed separately (expectation value in a one-particle state? current algebra?; matching to the free energy obtained by the other way?)
- No one yet studied whether this construction generates correct translations on composite operators (!)
- Approach on the basis of SUSY algebra and Ferrara–Zumino supermultiplet (H.S. (2012))

- Use a UV finite quantity that can be related with EMT in a translational invariant regularization
- Any regularization (including lattice) will produce the same number for such a UV finite quantity
- To define this UV finite quantity, we employ the so-called Yang-Mills gradient flow
- Yang–Mills gradient flow (a diffusion equation wrt a fictitious time $t \in \mathbb{R}$)

$$\partial_t B_\mu(t,x) = -g_0^2 \frac{\delta S}{\delta B_\mu(t,x)} = D_\nu G_{\nu\mu}(t,x), \qquad B_\mu(t=0,x) = A_\mu(x),$$

where $G_{\mu\nu}$ is the field strength of the flowed gauge potential:

$$G_{\mu\nu}(t,x) = \partial_{\mu}B_{\nu}(t,x) - \partial_{\nu}B_{\mu}(t,x) + [B_{\mu}(t,x), B_{\nu}(t,x)], \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$

• Note: the mass dimension of t is -2

Yang–Mills gradient flow (continuum theory)

$$\partial_t B_\mu(t,x) = -g_0^2 \frac{\delta S}{\delta B_\mu(t,x)} = D_\nu G_{\nu\mu}(t,x) = \Delta B_\mu(t,x) + \cdots, \quad B_\mu(t=0,x) = A_\mu(x)$$

Wilson flow (lattice theory)

$$\partial_t V(t,x,\mu) V(t,x,\mu)^{-1} = -g_0^2 \partial S_{\text{Wilson}}, \qquad V(t=0,x,\mu) = U(x,\mu)$$

- Application (Lüscher):
 - Definition of the topological charge
 - Scale setting (just like the Sommer scale r₀); taking for instance

$$E(t,x)\equiv \frac{1}{4}G^a_{\mu\nu}(t,x)G^a_{\mu\nu}(t,x)$$

and set

$$t^2 \langle E(t,x) \rangle \Big|_{t=t_0} = 0.3$$
, and set (for instance) $\sqrt{8t_0} = 0.5$ fm

- Computation of the chiral condensate
- Define UV finite quantities ← Our usage here

Yang–Mills gradient flow

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) + \alpha_0 D_\mu \partial_\nu B_\nu(t,x), \qquad B_\mu(t=0,x) = A_\mu(x),$$

where the second term in RHS was introduced to suppress the gauge mode; it can be seen that gauge invariant quantities are independent of α_0 . The formal solution is

$$B_{\mu}(t,x) = \int d^{D}y \left[K_{t}(x-y)_{\mu\nu}A_{\nu}(y) + \int_{0}^{t} ds \, K_{t-s}(x-y)_{\mu\nu}R_{\nu}(s,y) \right],$$

where K is the heat kernel and R denotes non-linear terms

$$\begin{split} \mathcal{K}_{t}(z)_{\mu\nu} &= \int_{\rho} \frac{e^{i\rho z}}{\rho^{2}} \left[(\delta_{\mu\nu} \rho^{2} - \rho_{\mu} \rho_{\nu}) e^{-t\rho^{2}} + \rho_{\mu} \rho_{\nu} e^{-\alpha_{0} t\rho^{2}} \right] \\ \mathcal{R}_{\mu} &= 2[B_{\nu}, \partial_{\nu} B_{\mu}] - [B_{\nu}, \partial_{\mu} B_{\nu}] + (\alpha_{0} - 1)[B_{\mu}, \partial_{\nu} B_{\nu}] + [B_{\nu}, [B_{\nu}, B_{\mu}]] \end{split}$$

Pictorially (cross: A_{μ} ; open circle: flow vertex R),

Perturbative expansion of the gradient flow

• Quantum correlation function of the flowed gauge field

$$\langle B_{\mu_1}(t_1,x_1)\cdots B_{\mu_n}(t_n,x_n)\rangle$$
,

is obtained by taking the expectation value of the initial value $A_{\mu}(x)$. For example, the contraction of two A_{μ} 's

produces the propagator of the flowed field

$$\delta^{ab} g_0^2 \frac{1}{(p^2)^2} \left[(\delta_{\mu\nu} p^2 - p_\mu p_\nu) e^{-(t+s)p^2} + \frac{1}{\lambda_0} p_\mu p_\nu e^{-\alpha_0(t+s)p^2} \right],$$

(where *t* and *s* are flow times at the end points; λ_0 is the conventional gauge parameter). Similarly, for

considering the contraction with the usual Yang-Mills vertex (the full circle)

Gauge invariance of the gradient flow

• Under the infinitesimal gauge transformation,

$$B_{\mu}(t,x) \rightarrow B_{\mu}(t,x) + D_{\mu}\omega(t,x),$$

the flow equation

$$\partial_t B_{\mu}(t,x) = D_{\nu} G_{\nu\mu}(t,x) + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}(t,x)$$

changes to

$$\partial_t B_{\mu}(t,x) = D_{\nu} G_{\nu\mu}(t,x) + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}(t,x) - D_{\mu} (\partial_t - \alpha_0 D_{\nu} \partial_{\nu}) \omega(t,x)$$

• Therefore, by choosing $\omega(t, x)$ as the solution of

$$(\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, x) = -\delta \alpha_0 \partial_\nu B_\nu(t, x), \qquad \omega(t = 0, x) = 0,$$

 α_0 can be changed as

$$\alpha_0 \rightarrow \alpha_0 + \delta \alpha_0$$

That is, $B_{\mu}(t, x)$'s corresponding to different α_0 's are related by a gauge transformation

Also, by choosing ω(t, x) as the solution of

$$(\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, \mathbf{x}) = \mathbf{0}, \qquad \omega(t = \mathbf{0}, \mathbf{x}) = \omega(\mathbf{x}),$$

the *D* dimensional gauge transformation $\omega(x)$ can be extended to a D + 1 dimensional gauge transformation $\omega(t, x)$ that leaves the flow equation unchanged

Hiroshi Suzuki (Kyushu University)

UV finiteness of the gradient flow I

• Correlation function of the flowed gauge field

$$\langle B_{\mu_1}(t_1, x_1) \cdots B_{\mu_n}(t_n, x_n) \rangle, \qquad t_1 > 0, \ldots, t_n > 0,$$

when expressed in terms of renormalized parameters, is UV finite without the wave function renormalization

• Tree-level two-point function

$$\left\langle ilde{B}^{a}_{\mu}(t, p) ilde{B}^{b}_{\nu}(s, q)
ight
angle \sim \delta^{ab} g_{0}^{2} rac{1}{(p^{2})^{2}} \left[(\delta_{\mu
u} p^{2} - p_{\mu} p_{
u}) e^{-(t+s)p^{2}} + rac{1}{\lambda_{0}} p_{\mu} p_{
u} e^{-lpha_{0}(t+s)p^{2}}
ight]$$

• 1-loop two point function (those containing only Yang-Mills vertices)

• The last counter term comes from rewriting to renormalized parameters as

$$g_0^2 = \mu^{2\epsilon} g^2 Z, \qquad \lambda_0 = \lambda Z_3^{-1}$$

• Usually, this becomes UV finite only by taking the wave function renormalization factor into account ...

Hiroshi Suzuki (Kyushu University)

UV finiteness of the gradient flow I

• ... here, we have also diagrams containing flow vertices

which give rise to the precisely same effect as the wave function renormalization factor

• All order proof (Lüscher-Weisz (2011))

• When a loop contains a vertex in the bulk (t > 0), the loop integral contains the flow-time evolution factor

 $\sim {\it e}^{-t\ell^2}$

which makes the loop integral finite; no bulk counterterm is necessary

• By using a BRS symmetry, it can be shown that all boundary (*t* = 0) counterterms are those of the Yang–Mills theory

UV finiteness of the gradient flow II

• Correlation function of the flow gauge field

$$\langle B_{\mu_1}(t_1, x_1) B_{\mu_2}(t_2, x_2) \cdots B_{\mu_n}(t_n, x_n) \rangle, \quad t_1 > 0, \ldots, t_n > 0,$$

remains finite even for the equal-point product

$$t_1 \rightarrow t_2, \qquad x_1 \rightarrow x_2,$$

- The new loop always contains the flow-time evolution factor $\sim e^{-t\ell^2}$ and this makes integral finite; no new UV divergence arises
- This is an extremely powerful property!

$$\left. \mathcal{B}_{\mu}(t,x)\mathcal{B}_{
u}(t,x)
ight|_{\mathsf{Dimensional Regularization}} = \left. \mathcal{B}_{\mu}(t,x)\mathcal{B}_{
u}(t,x)
ight|_{\mathsf{Lattice}}$$

• On the other hand, the difficulty in the present problem comes from

$$(A_R)_\mu(x)(A_R)_
u(x)|_{ ext{Dimensional Regularization}}
eq (A_R)_\mu(x)(A_R)_
u(x)|_{ ext{lattice}}$$

• Using this property of the gradient flow, we relate a certain quantity defined by the gradient flow and EMT in the dimensional regularization

Hiroshi Suzuki (Kyushu University)

Lattice energy-momentum tensor ...

• SU(N) Yang–Mills theory in $D = 4 - 2\epsilon$ dimensions

$$S = rac{1}{4g_0^2} \int d^D x \, F^a_{\mu
u}(x) F^a_{\mu
u}(x)$$

• Assuming the dimensional regularization, since it preserves the translational invariance, the naive expression

$$T_{\mu\nu}(x) = \frac{1}{g_0^2} \left[F^a_{\mu\rho}(x) F^a_{\nu\rho}(x) - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma}(x) F^a_{\rho\sigma}(x) \right]$$

fulfills the correct WT relation

$$\langle \partial_{\mu} T_{\mu\nu}(x) \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle = -\delta(x-y) \langle \partial_{\nu} \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle + \cdots$$

• It follows from this that $T_{\mu\nu}(x)$ does not receive the multiplicative renormalization

• So, we define a renormalized (finite) EMT by subtracting VEV, with dimensional regularization,

$$\{T_{\mu\nu}\}_{R}(x) = T_{\mu\nu}(x) - \langle T_{\mu\nu}(x) \rangle$$

Local product in finite flow time and EMT

 Now, we consider the following dim. 4 gauge invariant combinations of the flowed field;

$$U_{\mu\nu}(t,x) \equiv G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\rho\sigma}(t,x)$$
$$E(t,x) \equiv \frac{1}{4}G^{a}_{\mu\nu}(t,x)G^{a}_{\mu\nu}(t,x)$$

- The flow equation is a diffusion equation whose diffusion length is $\sim \sqrt{8t}$. So, in $t \rightarrow 0$ limit, $U_{\mu\nu}(t, x)$ and E(t, x) can be regarded as local operators in D dimensional x space
- Moreover, from the UV finiteness of the gradient flow, these are UV finite
- From these facts, for t → 0, above local products can be expressed by an asymptotic series of D dimensional renormalized operators (coefficients will be finite too):

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[\{T_{\mu\nu}\}_R(x) - \frac{1}{4} \delta_{\mu\nu} \{T_{\rho\rho}\}_R(x) \right] + O(t),$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) \{T_{\rho\rho}\}_R(x) + O(t),$$

Here, we have used the fact that $U_{\mu\nu}(x)$ is traceless for D = 4. O(t) is the contribution of operators with dim. 6 or higher

Hiroshi Suzuki (Kyushu University)

From the above expansions,

$$\begin{split} U_{\mu\nu}(t,x) &= \alpha_U(t) \left[\{T_{\mu\nu}\}_R(x) - \frac{1}{4} \delta_{\mu\nu} \{T_{\rho\rho}\}_R(x) \right] + \mathcal{O}(t), \\ E(t,x) &= \langle E(t,x) \rangle + \alpha_E(t) \{T_{\rho\rho}\}_R(x) + \mathcal{O}(t), \end{split}$$

by eliminating the trace part $\{T_{\rho\rho}\}_R(x)$, we have

$$\{T_{\mu\nu}\}_{R}(x) = \frac{1}{\alpha_{U}(t)}U_{\mu\nu}(t,x) + \frac{1}{4\alpha_{E}(t)}\delta_{\mu\nu}\left[E(t,x) - \langle E(t,x)\rangle\right] + O(t)$$

- Therefore, if we know the $t \to 0$ behavior of the coefficients $\alpha_U(t)$ and $\alpha_E(t)$, the EMT can be obtained by $t \to 0$ limit of the combination in RHS
- Now we show that α_U(t) and α_E(t) for t → 0 can be determined by perturbation theory

We apply

$$\left(\mu \frac{\partial}{\partial \mu}\right)_0, \quad \mu$$
: renormalization scale, 0: bare quantities fixed

to both sides of

$$\begin{split} U_{\mu\nu}(t,x) &= \alpha_U(t) \left[\{T_{\mu\nu}\}_R(x) - \frac{1}{4} \delta_{\mu\nu} \{T_{\rho\rho}\}_R(x) \right] + O(t), \\ E(t,x) &= \langle E(t,x) \rangle + \alpha_E(t) \{T_{\rho\rho}\}_R(x) + O(t) \end{split}$$

• Expressed in terms of bare quantities, LHS does not contain μ . So,

$$\begin{pmatrix} \mu \frac{\partial}{\partial \mu} \end{pmatrix}_{0} \alpha_{U}(t) \left[\{ T_{\mu\nu} \}_{R}(x) - \frac{1}{4} \delta_{\mu\nu} \{ T_{\rho\rho} \}_{R}(x) \right] = 0,$$
$$\begin{pmatrix} \mu \frac{\partial}{\partial \mu} \end{pmatrix}_{0} \alpha_{E}(t) \{ T_{\rho\rho} \}_{R}(x) = 0$$

• Further, since the EMT is not renormalized (it is a bare quantity),

$$\left(\mu\frac{\partial}{\partial\mu}\right)_{0}\alpha_{U,E}(t)=0$$

Renormalization group argument

• Introducing the β function,

$$\beta \equiv \left(\mu \frac{\partial}{\partial \mu}\right)_{0} \boldsymbol{g}$$

the above relation becomes

$$\left(\mu\frac{\partial}{\partial\mu}+\beta\frac{\partial}{\partial g}\right)\alpha_{U,E}(t)(g;\mu)=0$$

• This implies that in terms of the running coupling \bar{g} defined by $q \frac{d\bar{g}(q)}{da} = \beta(\bar{g}(q)), \qquad \bar{g}(q = \mu) = g,$

the coefficients do not depend on the renormalization scale:

$$\alpha_{U,E}(t)(\bar{g}(q);q) = \alpha_{U,E}(t)(\bar{g}(q');q').$$

So, we may set

$$q=\mu, \qquad q'=rac{1}{\sqrt{8t}}$$

and thus

$$\alpha_{U,E}(t)(g;\mu) = \alpha_{U,E}(t)(\bar{g}(1/\sqrt{8t});1/\sqrt{8t})$$

• Because of the asymptotic freedom, $\bar{g}(1/\sqrt{8t}) \rightarrow 0$ for $t \rightarrow 0$. The coefficients can evaluated by the perturbation theory (a sort of factorization)

Perturbative calculation of coefficients

 To find the coefficients in next to the leading order, we need to evaluate following flow-line Feynman diagrams

• In terms of the renormalized gauge coupling in the MS scheme,

$$\begin{aligned} \alpha_U(t)(g;\mu) &= g^2 \left\{ 1 + 2b_0 \left[\ln(\sqrt{8t}\mu) + \bar{s}_1 \right] g^2 + O(g^4) \right\}, \\ \alpha_E(t)(g;\mu) &= \frac{1}{2b_0} \left\{ 1 + 2b_0 \bar{s}_2 g^2 + O(g^4) \right\}, \end{aligned}$$

where

$$ar{s}_1 = rac{7}{16} + rac{1}{2}\gamma_E - \ln 2, \qquad ar{s}_2 = rac{109}{176} - rac{b_1}{2b_0^2} = rac{383}{1936},$$

and $b_0 = 11N/(48\pi^2)$ and $b_1 = 17N^2/(384\pi^4)$ are the first two coefficients of the β function; we see that $\alpha_{U,E}(t)$ are actually UV finite

• By the RG argument,

$$\begin{aligned} \alpha_U(t) &= \bar{g}(1/\sqrt{8t})^2 \left\{ 1 + 2b_0 \bar{s}_1 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right\}, \\ \alpha_E(t) &= \frac{1}{2b_0} \left\{ 1 + 2b_0 \bar{s}_2 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right\}, \end{aligned}$$

where

$$\bar{g}(q)^2 = \frac{1}{b_0 \ln(q^2/\Lambda^2)} - \frac{b_1 \ln[\ln(q^2/\Lambda^2)]}{b_0^3 \ln^2(q^2/\Lambda^2)} + O\left(\frac{\ln^2[\ln(q^2/\Lambda^2)]}{\ln^3(q^2/\Lambda^2)}\right)$$

Gathering all the above arguments,

$$\{T_{\mu\nu}\}_{R}(x) = \lim_{t \to 0} \left\{ \frac{1}{\alpha_{U}(t)} U_{\mu\nu}(t,x) + \frac{1}{4\alpha_{E}(t)} \delta_{\mu\nu} \left[E(t,x) - \langle E(t,x) \rangle \right] \right\}$$

- This extracts a correctly normalized conserved EMT from local products defined by the gradient flow
- Correlation functions of the quantities in RHS can (in principle) be computed non-perturbatively by using lattice regularization

• The master formula for EMT

$$\{T_{\mu\nu}\}_{R}(x) = \lim_{t \to 0} \left\{ \frac{1}{\alpha_{U}(t)} U_{\mu\nu}(t,x) + \frac{1}{4\alpha_{E}(t)} \delta_{\mu\nu} \left[E(t,x) - \langle E(t,x) \rangle \right] \right\}$$

- Correlation functions of the quantities in RHS can (in principle) be computed non-perturbatively by using lattice regularization
- The ordering of the limits is very important: first $a \rightarrow 0$ (continuum Yang–Mills) and then $t \rightarrow 0$
- Practically, we cannot simply take $a \rightarrow 0$ so we should take *t* as small as possible in the window

$$a \ll \sqrt{8t} \ll \frac{1}{\Lambda}$$

and the applicability is not obvious a priori...

Matching with the perturbation theory

• Example: 1-point function of the "energy" operator (Lüscher (2010))

$$t^{2} \langle E(t,x) \rangle = \frac{3(N^{2}-1)}{128\pi^{2}} \bar{g}(1/\sqrt{8t})^{2} \left[1+2b_{0}\bar{g}(1/\sqrt{8t})^{2}+O(\bar{g}^{4})\right],$$

where, in the $\overline{\text{MS}}$ scheme,

$$c\equiv rac{\gamma_E}{2}+rac{26}{33}-rac{9}{22}\ln 3$$

• With the 4-loop running coupling

- First physical application! (Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration))
- The objective of this workshop
- Bulk thermodynamical quantities are obtained by the expectation value of EMT just at that temperature (no integration wrt the temperature)
- "Trace anomaly", or the interaction measure,

$$\langle \varepsilon - 3\rho \rangle_T = - \langle \{T_{\mu\mu}\}_R(\mathbf{x}) \rangle_T,$$

Entropy density

$$\langle \varepsilon + p \rangle_T = - \langle \{T_{00}\}_R(\mathbf{x}) \rangle_T + \frac{1}{3} \sum_{i=1,2,3} \langle \{T_{ii}\}_R(\mathbf{x}) \rangle_T,$$

 We do not need to determine the overall normalization (or the non-perturbative β function) separately!; the normalization is already fixed in the master formula Wilson plaquette action, 1 pseudo-heatbath sweep and 5 over-relaxations
 N_s³ × N_τ = 32³ × (6, 8, 10, 32)

$N_{ au}$	6	8	10	T/T_c
$eta=6/g_0^2$	6.20	6.40	6.56	1.65
	6.02	6.20	6.36	1.24
	5.89	6.06	6.20	0.99

- For each parameter set, 300 configurations separated by 200–500 sweeps
- Wilson flow: 4th order Runge–Kutta with $\epsilon/a^2 = 0.025$
- Scale setting: $\beta \leftrightarrow a\Lambda$ from ALPHA Collaboration), aT_c at $\beta = 6.20$ from Boyd et al.
- 4-loop running coupling in MS scheme used in the coefficients
- Clover-type field strength $G^{a}_{\mu\nu}(x)$

• Thermal expectation values versus the flow time $\sqrt{8t}$

• We observe plateau behavior for $2a < \sqrt{8t}$ (and for $\sqrt{8t} < 1/(2T)$) which may be regarded as would-be $t \to 0$ limit

Application to the bulk thermodynamics of SU(3) YM

• Continuum limit of the values at $\sqrt{8t}T = 0.40$

Figure: cf. Boyd et al. (1996); Borsanyi et al. (2012)

 Consistent within 2σ; quite encouraging! A much comprehensive study using finer and larger lattices is carrying out

Hiroshi Suzuki (Kyushu University)

• We developed a formula that relates a correctly-normalized conserved EMT and quantities defined by the Yang–Mills gradient flow:

$$\{T_{\mu\nu}\}_{R}(x) = \lim_{t \to 0} \left\{ \frac{1}{\alpha_{U}(t)} U_{\mu\nu}(t,x) + \frac{1}{4\alpha_{E}(t)} \delta_{\mu\nu} \left[E(t,x) - \langle E(t,x) \rangle \right] \right\}$$

- Correlation functions of RHS can be computed by lattice Monte Carlo simulations
- Possible obstacle would be

$$a \ll \sqrt{8t}$$

- The measurement of one-point functions in the finite temperature indicates that our reasoning is correct and the present approach is promising
- The conservation law of EMT is still needed to be demonstrated by Monte Carlo simulations

 Inclusion of matter fields: flowed matter field requires the wave function renormalization (Lüscher (2013))

$$\chi(t,x) = Z_{\chi}^{-1/2} \chi_R(t,x), \qquad \bar{\chi}(t,x) = Z_{\chi}^{-1/2} \bar{\chi}_R(t,x)$$

To avoid the matching of Z_{χ} between the continuum and lattice theories, we may use fields normalized by their "condensation" as, for example,

$$ilde{\chi}(t,x) \equiv \sqrt{rac{-2\dim(R)N_fm}{(4\pi)^2 t \langle ar{\chi}(t,x)\chi(t,x)
angle}} \, \chi(t,x)$$

Composite operators of the tilded field are UV finite and our argument applies

• To find mixing coefficients in the next to leading order, requires

 $\bullet \sim 90\%$ of required calculation was over (but we still have some inconsistency...)

- Further physical applications: Viscosities, conformal field theory, dilaton physics, vacuum energy, ...
- By a similar idea using the Yang–Mills gradient flow, can we construct other Noether currents, such as the chiral current or the SUSY current, on the lattice???