The critical endpoint of the finite temperature phase transition in three flavor QCD

Yoshifumi Nakamura

RIKEN Advanced Institute for Computational Science

in collaboration with

X.-Y. Jin, Y. Kuramashi, S. Takeda & A. Ukawa

22 Jan. 2014, KEK

Columbia plot

 QCD phase transition for different quark masses at zero chemical potential

Critical endpoint(line) of $N_f = 3 \text{ QCD}$

• staggered type: [de Forcrand, Philipsen '07, Karsch, et. al. '03, Endrődi, et. al. '07, Ding, et. al. '11]

N_t	action	m_{π}^{E}
4	unimproved	260 MeV
6	unimproved	150 MeV
4	p4-improved	70 MeV
6	stout-improved	≲ 50 MeV
6	HISQ	≲ 45 MeV

• m_{π}^{E} decreases with decreasing lattice spacing

Critical endpoint(line) of $N_f = 3 \text{ QCD}$

• the crossover may persist down to ~ $0.1m^{phy}$

Critical endpoint(line) of $N_f = 3 \text{ QCD}$

• Wilson type: [lwasaki, et. al. '96], unimproved, $N_t = 4$

• 1st order at rather heavy m_q

Motivation

- Critical endpoint obtained with staggered and Wilson type fermios is inconsistent
- Results in the continuum limit is necessary and N_f = 3 study is a stepping stone
 - the order of phase transition around the physical point
 - curvature of critical surface
 - → Takeda-san's talk

We determine the critical endpoint on $m_l = m_s$ line with clover fermions

Simulation parameters

- action: Iwasaki gluon + N_f = 3 clover (non perturbative c_{SW} , degenerate)
- temporal lattice size $N_t = 4, 6, 8$ for continuum extrapolation
- 3 spatial lattice sizes and a couple of β for each N_t to determine the critical endpoint by using intersection points of the Binder cumulants (kurtosis)

• at
$$N_t = 4$$
, $N_l = 6, 8, 10$, $\beta = 1.60 - 1.70$

• at
$$N_t = 6$$
, $N_l = 10, 12, 16, \beta = 1.73 - 1.77$

- at $N_t = 8$, $N_l = 12, 16, 20, 24, \beta = 1.73 1.78$
- statistics: O(10,000) O(200,000) traj.

Observables

plaquette

$$P = \frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{\Box}$$

gauge action density

$$s_g = c_0(1 - P) + 2c_1(1 - R)$$

Polyakov loop

$$L = \frac{1}{N_l^3} \sum_{\vec{x}} L(\vec{x}), \ L(\vec{x}) = \frac{1}{3} \operatorname{Tr} \prod_{x_4=1}^{N_l} U_4(x)$$

Higher moments(1/2)

i-th derivative of weight with respect to control parameter *c*:

$$Q_i = \frac{\partial^i}{\partial c^i} e^{-S_g} (\det D)^{N_f}$$

Variance

$$V = \frac{\partial^2 \ln Z}{\partial c^2} = \langle Q_2 \rangle - \langle Q_1 \rangle^2$$

Higher moments(2/2)

• Skewness

e.g. right-skewed $\rightarrow S > 0$, left-skewed $\rightarrow S < 0$

$$S = \frac{1}{V^{\frac{3}{2}}} \frac{\partial^3 \ln Z}{\partial c^3} = \frac{\langle Q_3 \rangle - 3 \langle Q_2 \rangle \langle Q_1 \rangle + 2 \langle Q_1 \rangle^3}{V^{\frac{3}{2}}}$$

Kurtosis

e.g. Gaussian $\rightarrow K = 0$, uniform $\rightarrow K = -1$, 2δ func. $\rightarrow K = -2$

$$K = \frac{1}{V^2} \frac{\partial^4 \ln Z}{\partial c^4}$$

= $\frac{\langle Q_4 \rangle - 4 \langle Q_3 \rangle \langle Q_1 \rangle - 3 \langle Q_2 \rangle^2 + 12 \langle Q_2 \rangle \langle Q_1 \rangle^2 - 6 \langle Q_1 \rangle^4}{V^2}$
= $B_4 - 3$

Finite temperature phase transition

- Plaquette v.s. κ at lowest β (= 1.60)
- no bulk phase transition

Yoshifumi Nakamura (AICS)

1st order phase transition and crossover (like)

 $\beta = 1.60$ and $\kappa = 0.14345$ on $10^3 \times 4$, clear two states, $K \sim -1.5$

 $\beta = 1.70$ and $\kappa = 0.13860$ on $10^3 \times 4$, one state, $K \sim -0.5$

Distinguishing between 1st, 2nd and crossover

criterion	first order	second order	crossover
distribution	double peak	single peak	singe peak
χ peak	$\propto N_l^d$	$\propto N_l^{\alpha/\nu}$	-
$\beta(\chi_{\text{peak}}) - \beta_c$	$\propto N_I^{-d}$	$\propto N_l^{-1/\nu}$	-
kurtosis at $N_l \rightarrow \infty$	K= -2	-2 < K < 0	K=0

problems....

• finite size scaling and computing kurtosis require high statistics problem on weak 1st order phase transition

- scaling might work with wrong exponents
- peaks in histgram might emerge only at large N_l

N_l dependence of K

$$M = N_l^{-\beta/\nu} f_M(t N_l^{1/\nu})$$

• *K* does not depend on volume at a second order phase transition point

$$K + 3 = B_4(M) = \frac{N_l^{-4\beta/\nu} f_{M^4}(t N_l^{1/\nu})}{\left[N_l^{-2\beta/\nu} f_{M^2}(t N_l^{1/\nu})\right]^2} = f_B(t N_l^{1/\nu})$$

• At the first order phase transition point, for large volumes, *K* reaches the minimum [Billoire, et. at. '92]

$$K = -2 + \frac{c}{N_l^d} + O(1/N_l^{2d})$$

Our method

- determine the transition point by using a fit of around the peak of susceptibility (at N_t = 8 we also use β reweighting)
- determine kurtosis at transition point at each spatial lattice size
- find intersection point of kurtosis by fit(FSS inspired ansatz)

β reweighting

$$S(\beta, c_{SW}) = \beta N_P (C - P) - N_f \ln \det D(c_{SW})$$

where $C = c_0 + 2c_1$, $N_P = 6N_x N_y N_z N_t$,
 $P = 1/3 \text{ReTr}(c_0 W_{\mu\nu}^{1\times 1} + 2c_1 W_{\mu\nu}^{1\times 2})$

 β reweighting

$$w(\beta') = \exp[(\beta - \beta')N_P(C - P)]$$

 $c_{\rm SW}$ reweighting (Taylor expansion)

$$\ln \frac{\det D(c_{\rm SW})}{\det D(c_{\rm SW0})} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \operatorname{Tr}(D^{-1} \frac{\partial}{\partial c_{\rm SW}} D)^{n+1} (c_{\rm SW} - c_{\rm SW0})^{n+1}$$

plaquette at $\beta = 1.60$, $N_t = 4$

Polyakov loop at $\beta = 1.60$, $N_t = 4$

plaquette at $\beta = 1.65$, $N_t = 4$

plaquette at $\beta = 1.70$, $N_t = 4$

plaquette at $\beta = 1.73$, $N_t = 6$

plaquette at $\beta = 1.77$, $N_t = 6$

plaquette at $\kappa = 0.14024$, $N_t = 8$

plaquette at $\kappa = 0.13995$, $N_t = 8$

Critical endpoint at $N_t = 4$

• $(m_{PS}/m_V)_t$ is the interpolated value to κ_t

Critical endpoint at $N_t = 6$

Critical endpoint at $N_t = 8$

• need more statistics at $N_t = 8$

Yoshifumi Nakamura (AICS)

$K_{\rm E}$ and v

 K_E and ν are not consistent with values of any classes

$T_{\rm E}$ at $N_t = 4$

$T_{\rm E}$ at $N_t = 6$

$T_{\rm E}$ at $N_t = 8$

continuum extrapolation for $(m_{PS}/m_V)_E$

• :
$$m_{PS}^{phy;sym}/m_V^{phy;sym} = \sqrt{(m_\pi^2 + 2m_K^2)/3/[(m_\rho + 2m_{K^*})/3]} \sim 0.4817$$

• : $m_{\eta_{SS}}/m_\phi \sim 0.6719$

Yoshifumi Nakamura (AICS)

continuum extrapolation for $(T/m_V)_E$

Summary

- We have investigated the critical endpoint of QCD with clover fermions and determined the critical endpoint by using the intersection points of the Binder cumulants at $N_t = 4, 6, 8$ and extrapolated to the continuum limit
- the critical endpoint at rather larger quark mass than results with staggered fermions
- continuum extrapolation : bad scaling, β is too small at $N_t = 4$
- future
 - more statistics
 - larger N_l/N_t
 - $N_t > 8$
 - chiral condensate
 - $m_l \neq m_s$

