Quantum field theory on the Lefschetz thimble

Marco Cristoforetti ECT*

Abhishek Mukherjee $\underset{\text { ECT* }}{ }$
Luigi Scorzato INFN/TIFPA
Francesco Di Renzo University of Parma

PRD86, 074506 (2012)
PRD Rapid 88, 051501 (2013)
PRD Rapid 88, 051502 (2013)

Introduction: dense systems

Condensed matter

High energy physics

Introduction: dense systems

Studied using Monte Carlo simulations

Introduction: dense systems

Condensed matter

Hubbard model

$$
\begin{aligned}
& \mathcal{Z}= \operatorname{Tr}\left[e^{-\beta\left(\mathcal{H}_{K}+\mathcal{H}_{V}+\mathcal{H}_{\mu}\right)}\right] \\
& \mathcal{H}_{K}=-t \sum_{\langle i, j\rangle, \sigma}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right) \\
& \mathcal{H}_{\mu}=-\mu \sum_{i}\left(n_{i \uparrow}+n_{i \downarrow}\right) \\
& \mathcal{H}_{V}=U \sum_{i}\left(n_{i \uparrow}-\frac{1}{2}\right)\left(n_{i \downarrow}-\frac{1}{2}\right) .
\end{aligned}
$$

Introduction: dense systems

Shell model

$$
\begin{aligned}
& \mathcal{Z}=\operatorname{Tr} {\left[e^{-\beta\left(\mathcal{H}_{M F}+\mathcal{H}_{V_{r e s}}\right)}\right] } \\
& H_{M F}=\sum_{\alpha} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} \\
& H_{V_{\text {res }}}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| V|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
\end{aligned}
$$

Introduction: dense systems

High energy physics
Heavy ion collisions

QCD on the lattice

$$
\begin{gathered}
\mathcal{Z}=\int \mathcal{D} U \operatorname{det}[M(U)]^{N_{f}} e^{-S_{G}[U]} \\
S_{G}[U]=\frac{\beta}{3} \sum_{n \in \Lambda} \sum_{\mu<\nu} \operatorname{Retr}\left[\mathbf{1}-U_{\mu \nu}(n)\right]
\end{gathered}
$$

Introduction: sign problem

\Hubbard Model
\Shell Model
\QCD

What do they have in common?

SIGN PROBLEM

Introduction: dense systems

$$
\mathcal{Z}=\int \mathcal{D} A \operatorname{det}\left[\not D+m-\mu \gamma_{0} / 2\right] e^{S_{Y M}}
$$

The sign problem

at finite chemical potential the fermionic determinant is complex: standard Monte Carlo methods fails

$$
\operatorname{det} \mathrm{M}(\mu)=|\operatorname{det} \mathrm{M}(\mu)| \dot{d} / \theta
$$

$[\operatorname{det} \mathrm{M}(\mu)]^{*}=\operatorname{det} \mathrm{M}\left(-\mu^{*}\right)$

Unfortunately we cannot simply neglect the phase of the determinant. Phase quenched theory can be very different from the real world

An example of that difference that we will treat later is the Silver Blaze phenomenon

Introduction: Lefschetz thimble

We want to overcome sign problem for Lattice QCD We must be extremely careful not destroying physics [Silver Blaze phenomenon]
whatever machinery we use to solve the theory

Integration on a Lefschetz thimble

Before applying the idea to full QCD we choose to start from something more manageable: we consider here integration on Lefschetz thimbles for the case of a simple 0-dim field theory and the 4-dim scalar field with a quartic interaction

Lefschetz thimble on a lattice

Saddle point integration

the Airy function

$$
\operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right) \mathrm{d} t}
$$

Lefschetz thimble on a lattice

Saddle point integration

the Airy function

$$
\begin{aligned}
& \operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right) \mathrm{d} t} \\
& \quad \text { complexify } \\
& \ldots \\
& 2 \pi \\
& \int_{\gamma} e^{i\left(\frac{z^{3}}{3}+x z\right)} \mathrm{d} z \quad \text { integrate on SD } \\
& \frac{1}{2 \pi} e^{i \phi} \int_{\gamma} e^{\mathbb{R}\left[i\left(\frac{z^{3}}{3}+x z\right)\right]} \mathrm{d} z
\end{aligned}
$$

\pm Complexify the variable $t \rightarrow t_{R}+i t_{I}$
\geqslant Stationary point
\geq Steepest descent for the real part of the exponent starting at the stationary point \geq Imaginary part of the exponent is constant

Lefschetz thimble on a lattice

Saddle point integration

 the Airy function$$
\operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right) \mathrm{d} t}
$$

\geq Complexify the variable $t \rightarrow t_{R}+i t_{I}$ \geqslant Stationary point
\geqslant Steepest descent for the real part of the exponent starting at the stationary point y/maginary part of the exponent is constant

From saddle point to Lefschetz thimble

Saddle point integration

Works extremely well for low dimensional oscillating integrals.
Usually combined with an asymptotic expansion around the stationary point (sort of perturbative expansion).

The phase is stationary + important contributions localized = good for sign problem

What about a Monte Carlo integral along the curves of steepest descent

Lefschetz thimble on a lattice

Path integral and Morse theory

E. Witten arXiv:1009.6032 (2010)
\square Complexify
the degrees of freedom

$$
\int_{\mathbb{R}^{n}} \mathrm{~d} x^{n} g(x) \mathrm{e}^{f(x)} \quad \ldots \mathrm{z}=\mathrm{x}+\mathrm{i} y \ldots \rightarrow \quad \int_{\mathcal{C}} \mathrm{d} z^{n} g(z) \mathrm{e}^{f(z)}
$$

Deform appropriately the original integration path (Morse theory)

$$
\int_{\mathcal{C}} d z^{n} g(z) e^{f(z)}=\sum_{\sigma} n_{\sigma} \int_{\mathcal{L}_{\sigma}} d z^{n} g(z) e^{f(z)}
$$

$\mathcal{L}_{\sigma} \quad$ for each stationary point p_{σ} the L_{σ} (thimble) is the union of the paths of steepest descent that fall in p_{σ} at ∞

$$
\mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{L}_{\sigma}
$$ the thimbles provide a basis of the relevant homology group, with integer coefficients

Generalization of the one dimensional SD to n-dim problems is called Lefschetz thimble

Lefschetz thimble on a lattice

Path integral and Morse theory

E. Witten arXiv:1009.6032 (2010)Complexify
the degrees of freedom

$$
\int_{\mathbb{R}^{n}} \mathrm{~d} x^{n} g(x) \mathrm{e}^{f(x)} \quad \ldots \mathrm{z}=\mathrm{x}+\mathrm{i} y \ldots \int_{\mathcal{C}} \mathrm{d} z^{n} g(z) \mathrm{e}^{f(z)}
$$

Deform appropriately the
original integration path
(Morse theory)

$$
\int_{\mathcal{C}} \mathrm{d} z^{n} g(z) \mathrm{e}^{f(z)}=\sum_{\sigma} n_{\sigma} \int_{\mathcal{L}_{\sigma}} \mathrm{d} z^{n} g(z) \mathrm{e}^{f(z)}
$$

\# of intersections between steepest ascent and original integration domain

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

\square Can we use the thimble basis to compute the path integral for a QFT?

$$
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \longrightarrow\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}}
$$

\longrightarrow In principle yes but we have to discuss "the details"

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

$$
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \longrightarrow\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}}
$$

\square Computing the contribution from all the thimbles is probably not feasible
\square On a Lefschetz thimble the imaginary part of the action is constant but the measure term does introduce a new residual phase, due to the curvature of the thimble

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

the residual phase

$$
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{J}_{0}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{J}_{0}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \quad \begin{aligned}
& \text { "Additional phase coming fom the Jacobian of } \\
& \text { "the transformation between the canonical } \\
& \text { "thimblex basis and the tangent space to the }
\end{aligned}
$$

\searrow Does it lead to a sign problem?
No formal proof but ...
$\geqslant d \Phi=1$ at leading order and <d $\Phi>\ll 1$ are strongly suppressed by e^{-s}
\geq there is strong correlation between phase and weight (precisely the lack of such correlation is the origin of the sign problem)
\pm In fact this residual phase is completely neglected in the saddle point method

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

the residual phase

$$
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{J}_{0}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{J}_{0}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \quad \begin{aligned}
& \text { indditional phase coming from the Jacobian of } \\
& \text { itomplex basis and the tangent space to the }
\end{aligned}
$$

\geq Does it lead to a sign problem?
Hopefully not but nevertheless the calculation of that phase cannot be avoid!
\longrightarrow highly demanding in terms of computation power
$>\mathrm{H}$. Fujii et al JHEP 1310 (2013) 147
$>$ Next talk: Y Kikukawa

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

$$
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \longrightarrow\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}}
$$

\square Computing the contribution from all the thimbles is probably not feasible
\longrightarrow Is it necessary in order to have the correct physics?
I will try to convince you that in many cases we can consider only one thimble

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point
The study of the stationary points of the complexified theory is mandatory and has to be done on a case-by-caseThe system has a single global minimum?There are degenerate global minima, that are however connected by symmetries?There are degenerate global minima, with vanishing probability of tunneling?

There is a large number of stationary points that accumulate near the global minimum giving a finite contribution?

This case can be bad!

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

$$
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \longrightarrow \begin{aligned}
& \text { il } \\
& \text { in is is an exact reformulation of the original } \\
& \text { ind } \\
& \text { integral. } \\
& \text { For a QFT reproducing the original integral } \\
& \text { is both impractical and unnecessary }
\end{aligned}
$$

Consider the stationary point with the lower value of the real part of the action and with $\mathrm{n}_{\sigma} \neq 0$
Define a QFT on the thimble attached to this point. If
\longrightarrow The degrees of freedom are the same
\longrightarrow The symmetries are the same
\longrightarrow The same perturbative expansion
\longrightarrow The same continuum limit

By universality this is a legitimate regularisation of the original QFT

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

$$
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}}
$$

Universality is not a theorem BUT it is an assumed property studying QFTs on a lattice
\longrightarrow The same perturbative expansion
\longrightarrow The same continuum limit

By universality this is a legitimate regularisation of the original QFT

Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

$$
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}} \longrightarrow\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{J}_{0}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{J}_{0}} \prod_{x} \mathrm{~d} \phi_{x} e^{-S[\phi]}}
$$

\square Consider the stationary point with the lower value of the real part of the action and with $\mathrm{n}_{\sigma} \neq 0$
Define a QFT on the thimble attached to this point. If
\longrightarrow The degrees of freedom are the same
\longrightarrow The symmetries are the same
\longrightarrow The same perturbative expansion

Universality is not a theorem BUT it is an assumed property studying QFTs on a lattice
\longrightarrow The same continuum limit

By universality this is a legitimate regularisation of the original QFT

Lefschetz thimble: algorithm

Integration on a Lefschetz thimble
M. C., F. Di Renzo and L. Scorzato
PRD86, 074506 (2012)

Is it numerically applicable to QFT's on a Lattice?

Before applying the idea to full QCD we choose to start from something more manageable: we consider here integration on the Lefschetz thimbles for the case of
$\rightarrow \mathrm{a} 0$ dimensional field theory with $\mathrm{U}(1)$
symmetry
\rightarrow the four dimensional scalar field with a quartic interaction

Lefschetz thimble: algorithm

Langevin

PRD Rapid 88, 051501 (2013)

$$
\begin{aligned}
\frac{\mathrm{d} \phi_{i}^{R}(\tau)}{\mathrm{d} \tau} & =-\frac{\delta S^{R}(\phi(\tau))}{\delta \phi_{i}^{R}(\tau)}+\eta_{i}^{R}(\tau) \\
\frac{\mathrm{d} \phi_{i}^{I}(\tau)}{\mathrm{d} \tau} & =-\frac{\delta S^{R}(\phi(\tau))}{\delta \phi_{i}^{I}(\tau)}+\eta_{i}^{I}(\tau)
\end{aligned}
$$

$\frac{\mathrm{d} \eta_{i}(\tau)}{\mathrm{d} \tau}=\sum_{k} \eta(\tau)_{k} \partial_{k} \partial_{j} S_{R}$ projection of the noise on the tangent space

Metropolis

PRD Rapid 88, 051502 (2013)

$$
\frac{\mathrm{d} \phi_{i}(r)}{\mathrm{d} r}=\frac{1}{r} \frac{\overline{\delta S}}{\delta \phi_{i}(r)} \quad \cdots \cdots \rightarrow \quad \phi_{i}(n+1)=\phi_{i}(n)+\delta r \overline{\frac{\delta S}{\delta \phi_{i}}}
$$

Other methods (example HMC)

$>$ H. Fujii et al JHEP 1310 (2013) 147
\longrightarrow Next talk: Y Kikukawa

Lefschetz thimble: algorithm

Langevin

PRD Rapid 88, 051501 (2013)
We want to compute this:
boundend from below on Jo

$$
\langle\mathcal{O}\rangle=\frac{1}{Z_{0}} e^{-i S_{I}} \int_{\substack{\mathcal{J}_{0} \\ \text { constant on Jo }}} \prod_{\substack{x\\}} \phi_{x} e^{-\widehat{S}_{R}[\phi]} \mathcal{O}[\phi]
$$

We can use a Langevin algorithm but how can we stay on the thimble?

$$
\begin{aligned}
& \text { preserve Jo } \\
& \text { by } \\
& \text { construction } \\
& \frac{\mathrm{d} \phi_{i}^{R}(\tau)}{\mathrm{d} \tau}=-\frac{\delta S^{R}(\phi(\tau))}{\delta \phi_{i}^{R}(\tau)}+\begin{array}{ll}
\eta_{i}^{R}(\tau) & \begin{array}{l}
\text { Need to be } \\
\text { projected on }
\end{array}
\end{array} \\
& \frac{\mathrm{d} \phi_{i}^{I}(\tau)}{\mathrm{d} \tau}=-\frac{\delta S^{R}(\phi(\tau))}{\delta \phi_{i}^{I}(\tau)}+\eta_{i}^{I}(\tau) \quad \begin{array}{l}
\text { the tangent } \\
\text { space to Jo }
\end{array}
\end{aligned}
$$

Lefschetz thimble: algorithm

Langevin

PRD Rapid 88, 051501 (2013)

We can use a Langevin algorithm but how can we stay on the thimble?

The tangent space at the stationary point is easy to compute
We can get tangent vectors at any point if we can transport the noise along the gradient flow so that it remains tangent to the thimble

$$
\rightarrow \mathcal{L}_{\partial S_{R}}(\eta)=0 \quad \leftrightarrow \quad\left[\partial S_{R}, \eta\right]=0 \quad \leftrightarrow \quad \frac{\mathrm{~d} \eta_{i}(\tau)}{\mathrm{d} \tau}=\sum_{k} \eta(\tau)_{k} \partial_{k} \partial_{j} S_{R}
$$

projection of the noise on the tangent space

Lefschetz thimble: algorithm

Langevin

PRD Rapid 88, 051501 (2013)

Lefschetz thimble: algorithm

Langevin on the Lefschetz thimble vs Complex Langevin

Complex Langevin

$$
\begin{aligned}
& \frac{\mathrm{d} \phi_{i}^{R}(\tau)}{\mathrm{d} \tau}=-\frac{\delta S^{R}(\phi(\tau))}{\delta \phi_{i}^{R}(\tau)}+\eta_{i}^{R}(\tau) \\
& \frac{\mathrm{d} \phi_{i}^{I}(\tau)}{\mathrm{d} \tau}=+\frac{\delta S^{R}(\phi(\tau))}{\delta \phi_{i}^{I}(\tau)}+\eta_{i}^{I}(\tau)
\end{aligned}
$$

The relation between the two approaches should be studied carefully!

Lefschetz thimble: algorithm

Metropolis

PRD Rapid 88, 051502 (2013)

In the neighbourhood of a critical point \rightarrow

$$
\begin{aligned}
& S[\phi]=S\left[\phi_{0}\right]+S_{G}[\eta]+\mathcal{O}\left(|\eta|^{3}\right) \\
& S_{G}=\frac{1}{2} \sum_{k} \lambda_{k} \eta_{k}^{2}
\end{aligned}
$$

$\phi_{i}=\phi_{i}^{0}+\sum_{k} w_{k i} \eta_{k}$
Go is the flat thimble associated to the gaussian action SG_{G}

The $\boldsymbol{\lambda}$ and \mathbf{w} are solutions of

$$
H w_{k}=\lambda_{k} \bar{w}_{k} \quad \text { where } \mathbf{H} \text { is the Hessian }
$$

η real are the direction of steepest descent of S_{R} and the equations of steepest descent of n for the Gaussian action can be explicitly solved in term of a new parameter $r=e^{-\tau}$

$$
\rightarrow \quad \frac{\mathrm{d} \eta_{k}}{\mathrm{~d} r}=\frac{1}{r} \frac{\partial \bar{S}_{G}}{\partial \eta_{k}}=\frac{1}{r} \lambda_{k} \eta_{k} \quad \rightarrow \quad \eta_{k} \propto r^{\lambda_{k}}
$$

but for $r=\varepsilon$ infinitesimal the Lefschetz and Gaussian thimbles coincide

$$
\begin{aligned}
& \phi_{i}(\epsilon)=\phi_{i}^{0}+\sum_{k} \epsilon^{\lambda_{k}} w_{k i} \eta_{k} \\
& \frac{\mathrm{~d} \phi_{i}}{\mathrm{~d} r}=\frac{1}{r} \frac{\partial S}{\partial \phi_{i}} \quad r \in[\epsilon, 1]
\end{aligned}
$$

Start with a random real n vector, compute $\Phi(\varepsilon)$ and evolve using steepest descent

Lefschetz thimble: algorithm

Metropolis

PRD Rapid 88, 051502 (2013)

In the neighbourhood of a critical point \rightarrow

$$
\begin{aligned}
& S[\phi]=S\left[\phi_{0}\right]+S_{G}[\eta]+\mathcal{O}\left(|\eta|^{3}\right) \\
& S_{G}=\frac{1}{2} \sum_{k} \lambda_{k} \eta_{k}^{2}
\end{aligned}
$$

$\phi_{i}=\phi_{i}^{0}+\sum_{k} w_{k i} \eta_{k}$
Go is the flat thimble associated to the gaussian action Sg_{g}

The $\boldsymbol{\lambda}$ and \mathbf{w} are solutions of

$$
H w_{k}=\lambda_{k} \bar{w}_{k} \quad \text { where } \mathbf{H} \text { is the Hessian }
$$

$n \rightarrow n$-dim random vector living on the manifold defined by the eigenvectors of the Hessian computed at the critical point with positive eigenvalues
$|n| \rightarrow$ distance along the thimble

$$
\begin{aligned}
& \frac{\mathrm{d} \phi_{i}(r)}{\mathrm{d} r}=\frac{1}{r} \overline{\frac{\delta S}{\delta \phi_{i}(r)}} \\
& \quad \cdots \cdots \rightarrow \quad \phi_{i}(n+1)=\phi_{i}(n)+\delta r \overline{\frac{\delta S}{\delta \phi_{i}}}
\end{aligned}
$$

$|n| / \delta r \rightarrow \underset{\text { descent }}{\text { number of steps along the steepest }}$

Lefschetz thimble: algorithm

Gaussian thimble

U(1) one plaquette model

Can be seen as the limiting case of the more interesting three-dimensional XY modelOne dimensional problem: the integration on the Lefschetz thimble can be plotted

$$
\begin{aligned}
& \text { ACTION } \quad S=-i \frac{\beta}{2}\left(U+U^{-} 1\right)=-i \beta \cos \phi \\
& \text { OBSERVABLE } \quad\left\langle e^{i \phi}\right\rangle=i \frac{J_{1}(\beta)}{J_{0}(\beta)}
\end{aligned}
$$

On the thimble

$$
\langle\mathcal{O}(\phi)\rangle=\frac{\sum_{\sigma} m_{\sigma} \int_{\mathcal{J}_{\sigma}} d \phi \mathcal{O}(\phi) e^{-S(\phi)}}{\sum_{\sigma} m_{\sigma} \int_{\mathcal{J}_{\sigma}} d \boldsymbol{\phi}(\phi) e^{-S(\phi)}} \quad \square S_{R}=-\beta \sin \phi_{R} \sinh \phi_{I} .
$$

U(1) one plaquette model

PRD Rapid 88, 051502 (2013)

The stationary points are in $(0,0)$ and $(\pi, 0)$ and the thimble can be computed also analytically\square
Exact thimbles: have to pass from the critical point and the imaginary part of the action has to be constant

$$
S_{I}(\tau)=-\beta \cos \phi_{R}(\tau) \cosh \phi_{I}(\tau)=S_{I}^{\mathrm{cp}}
$$

CRITICAL POINTS

U(1) one plaquette model

The stationary points are in $(0,0)$ and $(\pi, 0)$ and the thimble can be computed also analytically
\square In order to perform the integration on the thimble we use a Metropolis algorithm

U(1) one plaquette model

PRD Rapid 88, 051502 (2013)

OBSERVABLE

$$
\left\langle e^{i \phi}\right\rangle=i \frac{J_{1}(\beta)}{J_{0}(\beta)}
$$

气㐅

U(1) one plaquette model

Residual phase is well under control and is not a source
of additional sign problem (at least in this case)

$$
\langle\mathcal{O}(\phi)\rangle=\frac{\sum_{\sigma} m_{\sigma} \int_{\mathcal{J}_{\sigma}} d \phi \mathcal{O}(\phi) e^{-S(\phi)}}{\sum_{\sigma} m_{\sigma} \int_{\mathcal{J}_{\sigma}} d \phi(\phi) e^{-S(\phi)}}
$$

"There is an additional phase coming from the "Jacobian of the transformation between the
" canonical complex basis and the tangent space to the thimble

This phase should be essentially constant over the portion of phase space which dominates the integral.

$\lambda \Phi^{4}$ theory on the lattice

PRD Rapid 88, 051501 (2013)

$$
\begin{aligned}
S\left[\phi, \phi^{*}\right]=\int \mathrm{d}^{4} x\left(\left|\partial_{\nu} \phi\right|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\lambda|\phi|^{4}+\mu\left(\phi^{*} \partial_{0} \phi-\partial_{0} \phi^{*} \phi\right)\right. \\
\text { Continuum action }
\end{aligned}
$$

Silver Blaze problem

when $\mathrm{T}=0$ and $\mu<\mu_{c}$ physics is independent from the chemical potential

We will study the system at zero temperature

$\lambda \Phi^{4}$ theory on the lattice

$$
S\left[\phi, \phi^{*}\right]=\int \mathrm{d}^{4} x\left(\left|\partial_{\nu} \phi\right|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\lambda|\phi|^{4}+\mu\left(\phi^{*} \partial_{0} \phi-\partial_{0} \phi^{*} \phi\right)\right.
$$

Continuum action

$$
\begin{aligned}
& S\left[\phi, \phi^{*}\right]=\sum_{x}\left[\left(2 d+m^{2}\right) \phi_{x}^{*} \phi_{x}+\lambda\left(\phi_{x}^{*} \phi_{x}\right)^{2}\right. \\
& \left.-\sum_{\nu=0}^{4}\left(\phi_{x}^{*} \mathrm{e}^{-\mu \delta_{\nu, 0}} \phi_{x+\hat{\nu}}+\phi_{x+\hat{\nu}}^{*} \mathrm{e}^{\mu \delta_{\nu, 0}} \phi_{x}\right)\right)
\end{aligned}
$$

Lattice action:

chemical potential introduced as an imaginary constant vector potential in the temporal direction
in term of real fields $\phi_{a}(a=1,2) \quad \phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$

$$
\begin{aligned}
S\left[\phi_{a}\right]=\sum_{x} & {\left[\frac{1}{2}\left(2 d+m^{2}\right) \phi_{a, x}^{2}+\frac{\lambda}{4}\left(\phi_{a, x}^{2}\right)^{2}-\sum_{\nu=1}^{3} \phi_{a, x} \phi_{a, x+\hat{i}}\right.} \\
& \left.-\cosh \mu \phi_{a, x} \phi_{a, x+\hat{0}}+i \sinh \mu \varepsilon_{a b} \phi_{a, x} \phi_{b, x+\hat{0}}\right]
\end{aligned}
$$

$\lambda \Phi^{4}$ theory on the lattice

PHASE QUENCHED

$$
\begin{aligned}
& S\left[\phi, \phi^{*}\right]=\int \mathrm{d}^{4} x\left(\left|\partial_{\nu} \phi\right|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\lambda|\phi|^{4}+\mu\left(\phi^{*} \partial_{0} \phi-\partial_{0} \phi^{*} \phi\right)\right. \\
& \langle\mathcal{O}\rangle_{\text {full }}=\frac{\int \mathcal{D} \phi\left|e^{-S}\right| e^{i \theta} \mathcal{O}}{\int \mathcal{D} \phi\left|e^{-S}\right| e^{i \theta}}=\frac{\left\langle e^{i \theta} \mathcal{O}\right\rangle_{\mathrm{pq}}}{\left\langle e^{i \theta}\right\rangle_{\mathrm{pq}}} \quad, \ldots \cdots \cdots \frac{0}{0}
\end{aligned}
$$

Let us try ignoring the phase

$$
\langle\mathcal{O}\rangle_{\mathrm{pq}}=\frac{\int \mathcal{D} \phi\left|e^{-S}\right| \mathcal{O}}{\int \mathcal{D} \phi\left|e^{-S}\right|}
$$

$\lambda \Phi^{4}$ theory on the lattice

PRD Rapid 88, 051501 (2013)

PHASE QUENCHED

$$
\mathrm{S}\left[\phi, \phi^{*}\right]=\int \mathrm{d}^{4} x\left(\left|\partial_{\nu} \phi\right|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\lambda|\phi|^{4}+\mu\left(\phi^{*} \partial_{0} \phi_{0}=0_{0} \dot{\phi}_{-}^{*} \phi\right)\right.
$$

$$
\langle n\rangle=\frac{1}{V} \frac{\partial \ln Z}{\partial \mu}
$$

$\lambda \Phi^{4}$ on a Lefschetz thimble

PRD Rapid 88, 051501 (2013)

On the Lefschetz thimble
 M. C., F. Di Renzo, A. Mukherjee and L. Scorzato arXiv:1303.7204 (2013)

\square Fields are complexified $\quad \phi_{a} \rightarrow \phi_{a}^{R}+i \phi_{a}^{I}$The integration on the thimble performed with a Langevin algorithm
\square In this case calculations in Gaussian approximation are sufficient to obtain the exact result

$\lambda \Phi^{4}$ on a Lefschetz thimble

PRD Rapid 88, 051501 (2013)

On the Lefschetz thimble

solving sign problem we have the correct physics

$\lambda \Phi^{4}$ on a Lefschetz thimble

On the Lefschetz thimble

Comparison with Worm Algorithm (courtesy of C. Gattringer and T. Kloiber)

$$
\langle n\rangle=\frac{1}{V} \frac{\partial \ln Z}{\partial \mu}
$$

What about QCD?

\square Consider the stationary point with the lower value of the real part of the action and with $\mathrm{n}_{\sigma} \neq 0$
Define a QFT on the thimble attached to this point.
$\searrow \ln$ QCD this is the trivial vacuum
\searrow Complexification: $\quad A_{\nu}^{a}(x) \rightarrow A_{\nu}^{a, R}(x)+i A_{\nu}^{a, R}(x) \quad a=1 \ldots N_{c}^{-1}$

$$
S U(3)^{4 V} \rightarrow S L(3, \mathbb{C})^{4 V}
$$

\searrow Covariant derivative: $\quad \nabla_{x, \nu, a} F[U]:=\frac{\partial}{\partial \alpha} F\left[e^{i \alpha T_{a}} U_{\nu}(x)\right]_{\mid \alpha=0}$

$$
\begin{aligned}
\nabla_{x, \nu, a} & =\nabla_{x, \nu, a}^{R}-i \nabla_{x, \nu, a}^{I} \\
\bar{\nabla}_{x, \nu, a} & =\nabla_{x, \nu, a}^{R}+i \nabla_{x, \nu, a}^{I}
\end{aligned}
$$

\searrow Equation of steepest descent: $\quad \frac{\mathrm{d}}{\mathrm{d} \tau} U_{\nu}(x ; \tau)=\left(-i T_{a} \bar{\nabla}_{x, \nu, a} \bar{S}[U]\right) U_{\nu}(x ; \tau)$
\downarrow Defining the thimble for gauge theories is possible: substitute the concept of nondegenerate critical point with that of non-degenerate critical manifold

All the ingredients are there

What about QCD?

\longrightarrow The symmetries are the same? Yes
\searrow It can be proved starting from the invariance of the SD equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} U_{\nu}(x ; \tau)=\left(-i T_{a} \bar{\nabla}_{x, \nu, a} \bar{S}[U]\right) U_{\nu}(x ; \tau)
$$

Under gauge transformations it changes as:

$$
\begin{aligned}
& \left(T_{a} \bar{\nabla}_{x, \nu, a} \bar{S}[U]\right) \rightarrow\left(\Lambda(x)^{-1}\right)^{\dagger}\left(T_{a} \bar{\nabla}_{x, \nu, a} \bar{S}[U]\right) \Lambda(x)^{\dagger} \\
& U_{\nu}(x) \rightarrow \Lambda(x) U_{\nu}(x) \Lambda(x+\hat{\nu})^{-1}
\end{aligned}
$$

The full SD equation is invariant only under the $\operatorname{SU}(3)$ subgroup of $\operatorname{SL}(3, C)$ this is very interesting: the gauge links are not in $S U(3)$ but the gauge invariance is exactly the same!
\longrightarrow The perturbative expansion is the same? Yes
\searrow It is an expansion around the trivial vacuum where the integrand in the partition function has the form of a gaussian times polynomials (let me skip the details)

Something else on a Lefschetz thimble

Next steps

- Theoretical questions (single thimble, residual phase, reflection positivity ...)
- 0-dim Φ^{4} (finished)
- Chiral random matrix theory
- Thirring model
- Hubbard model (repulsive almost done)
- SU(3) pure gauge with theta term
- QCD in 0+1 dimension
-...
- QCD
thank you

