Dense QCD and Compact Stars

KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN)

<u>Plan of this Talk</u>

- 1. QCD Phase Structure
- 2. Neutron Star and Dense EOS
- 3. Dense EOS and Lattice QCD
- 4. Neutron Star and Hadron-Quark Crossover
- 5. Summary

QCD Phase Diagram (30 years ago)

E. Fermi (1953) → G. Baym (1983)

QCD Phase Diagram (now)

K. Fukushima and T. Hatsuda, "The Phase Diagram of Dense QCD" Rep. Prog. Phys. 74 (2011) 014001

Symmetry Realization in dense QCD ($N_c=3$, $N_f=3$)

Symmetry Realization in dense QCD ($N_c=3$, $N_f=3$)

Chiral symmetry is always broken at finite density

Dense Matter and Neutron Star

composition

- nuclei
- neutrons & protons
- mesons (π, K)
- hyperons (Λ, Σ⁻, Ξ⁻)
- quarks (u,d,s)
- + leptons (e, µ)

Neutron Star on top of KEK

Basic equations for compact star

1. Tolman–Oppenheimer–Volkoff equation ← GR

(TOV)

$$\begin{aligned} \frac{d\mathcal{M}(r)}{dr} &= 4\pi r^2 \varepsilon(r), \\ -\frac{dP(r)}{dr} &= \frac{G\varepsilon\mathcal{M}}{r^2} \left(1 - \frac{2G\mathcal{M}}{r}\right)^{-1} \left(1 + \frac{P}{\varepsilon}\right) \left(1 + \frac{4\pi r^3 P}{\mathcal{M}}\right), \end{aligned}$$

2. Equation of state $P=P(\varepsilon) \leftarrow$ Strong int. (EOS) EM int. (charge neutrality) Weak int. (β equilibrium)

Schematic Mass-Radius relation

From Yagi, Miake and Hatsuda,

"Quark-Gluon Plasma", Cambridge Univ. Press (2008)

N_{\star} observations

Current:

 $M = (1.97 \pm 0.04) M_{\odot}$ $M = (2.01 \pm 0.04) M_{\odot}$

X-ray bursts

(Nature 2010) (Science 2013) cold EOS cold EOS \Leftrightarrow

Cooling of CAS-A \Leftrightarrow ³P₂ superfluid? Magnetars \Leftrightarrow ferromagnetic core?

Near Future:

GW from N_{\bigstar} merger \Leftrightarrow hot EOS

Cassiopeia A cooling: T decreases by 4% in 9 years (Heinke & Ho, ApJ 2010)

PSR J1614-2230 : M=1.97(4) M_☉ (Demorest et al., Nature 2010)

Magnetars: B~10¹⁴⁻¹⁵ G (from Enoto, 2012) Bs=3.2x10¹⁹V(PPdot) [G]

Gravitational wave from N_☆ merger -- Detectors --

VIRGO:2016~ Design sensitivity: 2019 -

Design sensitivity: 2017 ~

LIGO: 2015 ~

Design

Vacuum Duct

3-4 km

Fabry-Perot Optical cavity

Photodetector

M. Shibata (YITP)

Gravitational wave from N_☆ merger -- Expected signal --

Sekiguchi, Kiuchi, Kyutoku & Shiata, PRL 107 (2011); PTEP (2013)

Gravitational wave from N_☆ merger -- Expected signal --

Sekiguchi, Kiuchi, Kyutoku & Shiata, PRL 107 (2011); PTEP (2013)

From QCD to Hot/Dense Matter

Nuclear Force and dense EOS (nucleons only)

Mass-Radius relation of N $_{k}$ (nucleons only)

Lattice QCD and Multi-baryon

Hadrons to Atomic nuclei from Lattice QCD

Univ. Tsukuba RIKEN Nihon Univ. T. Inoue Kyoto Univ. Univ. Tokyo

N. Ishii, H. Nemura, K. Sasaki

- T. Doi, T. Hatsuda, Y. Ikeda
- S. Aoki, K. Murano
- B. Charron

Review: "Lattice QCD Approach to Nuclear Physics" HAL QCD Collaboration, Prog. Theor. Exp. Phys. 2012 (2012) 01A105

Baryon force: From phenomenology to 1st principle

Hadronic correlations in LQCD

FV Method vs. HAL QCD Method : do they agree ?

$\pi \pi$ scattering in I=2 channel

 N_s =16,24,32,48, N_t =128 a=0.115 fm, (quenched QCD, m_{π} =940 MeV) Kurth, Ishii, Doi, Aoki & Hatsuda, arXiv: JHEP 1312 (2013) 015

What about NN ?

$$\left(\frac{\mathcal{S}}{\mathcal{N}}\right)_{NN} \sim \sqrt{N_{\rm gc}} \ e^{-2(m_N - 3m_\pi/2)t}$$

Finite Volume Method guaranteed to fail for NN system with small m_{π} and large L

$$\left(\frac{\mathcal{S}}{\mathcal{N}}\right)_{\pi\pi} \sim \sqrt{N_{\rm gc}}$$

Lepage, TASI 1989 Lecture

What about NN (cont'd)?

$$\phi(\mathbf{r}, t > t^*) = \sum_{n < n^*} b_n \phi_n(\mathbf{r}) e^{-E_n t} \equiv \varphi(\mathbf{r}, t) e^{-2m_N t}$$

$$\left[\frac{1}{4m_N}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{m_N}\right]\varphi(\mathbf{r}, \mathbf{t}) = \int U(\mathbf{r}, \mathbf{r}')\varphi(\mathbf{r}')d^3r'$$

HAL QCD Coll., PLB 712 (2012) 437

t > t* is only necessary

Non-local kernel U(r,r')

- energy independent
- L-insensitive
- consistent 3-body force
- <u>not</u> an observable

NN Central & Tensor Forces in 3-flavor QCD

HAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

NN phase shifts in 3-flavor QCD

Stronger attraction in the deuteron channel

HAL QCD Coll., Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

Symmetry Matters

Heisenberg (1926), Dirac (1926) Heitler-London (1927)

HAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

⇒ Baryon-baryon force in flavor SU(3)

$8 \times 8 = \underline{27 + 8s + 1} + \underline{10^* + 10 + 8a}$ Symmetric Anti-symmetric

Six independent potentials in the flavor-basis

SU(3) breaking: coupled channel LQCD

Sasaki et al. [HAL QCD Coll.] (2012)

$$\left(k_n^2 + \nabla^2\right)\phi_n^{\alpha}(\vec{r}, t) = \int U(\vec{r}, \vec{r'})^{\alpha\beta}\phi_n^{\beta}(\vec{r'}, t)d^3r'$$

Example: S=-1, ${}^{3}S_{1}$, I=1/2 (m_{π}/m_K=0.89, 0.8)

PACS-CS (2+1)-flavor config. L=2.9 fm

K computer @ **RIKEN** (11.28 PFlops, 80,000 CPUs x 8 = 640,000 cores)

From Quarks to Cosmos

Nuclear EOS from Lattice NN force + BHF calculation

(NN force: ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}D_{1}$ channels only)

HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503

Nuclear Matter

Neutron Matter

Neutron Star from "Lattice EOS"

HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503

Hyperon Crisis

μ_e

μA

Possible Resolution(s) of Hyperon Crisis

1. 2-body YN forces completely different from NN?

unlikely from lattice QCD studies

HAL QCD Coll., Nucl.Phys.A881 (2012) 28

2. Repulsive 3-body forces in YN too?

not enough even with $V_{YNN} = V_{YYN} = V_{YYY} = V_{NNN}$

3. n(>3) -body forces ?

no information so far. convergence ?

4. Crossover to quark matter ?

Hatsuda, Tachibana, Yamamoto & Baym, PRL 97 (2006) 122001

$2M_{\odot}$ neutrons stars require,

- STIFF quark-matter EOS
- Smooth crossover (no 1st order transition)
- Crossover at ρ =(2-4) ρ_0

Crossover from Soft Hyperon Core to Stiff Quark Core

Hatsuda, Tachibana, Yamamoto & Baym, Phys. Rev. Lett. 97, 122001 (2006) Bratovic, Hatsuda & Weise, PLB 719, 131 (2013)

Masuda, Hatsuda & Takatsuka, Astrophysical Journal Letters 764 (2013) 12

Summary

1. Dense QCD is a real challenge

theory:

- BB and BBB forces from lattice QCD (HAL QCD Coll.)
 - -- physical point results with L~10 fm will come soon.
- sign problem unsolved

obs.:

- progresses in M, R, T, B measurements
 - -- $2M_{\odot}$ NStars, Magnetars, CAS-A cooling, X-ray bursts
- Gravitational wave detections will be ready soon

2. Hyperon Crisis

- no convincing resolution yet
 - -- higher body hyperon force ?
 - -- crossover to stiff quark matter
 - \rightarrow may be studied by HIC ?

END