Some topics in 2－flavor QCD at zero and finite temperature

Sinya AOKI

Yukawa Institute for Theoretical Physics，Kyoto University

Workshop Lattice QCD at finite temperature and density， January 20－22，2014，Seminar room at No． 4 Building，KEK

Part I

Chiral Symmetry Restoration and

 Eigenvalue Density of Dirac Operator at Finite Temperaturewith H．Fukaya and Y．Taniguchi for JLQCD Collaboration

Also related to Taniguchi－san＇s talk after this．

1．Introduction

Chiral symmetry of QCD
phase transition
low T $U(1)_{B} \otimes S U\left(N_{f}\right)_{V} \sim$ high T $U(1)_{B} \otimes S U\left(N_{f}\right)_{L} \otimes S U\left(N_{f}\right)_{R}$

Some questions

1．Eigenvalue distribution of Dirac operator

2．Recovery of $U(1) _A$ symmetry at high T ？

Previous studies on 1

$$
\rho(\lambda)=\lim _{V \rightarrow \infty} \frac{1}{V} \sum_{n} \delta\left(\lambda-\lambda_{n}\right)
$$

Cossu et al．（JLQCD 2013），Overlap Phys．Rev．D87（2013） 114514

Previous studies on 2

$$
\chi_{U(1)_{A}}=\int d^{4} x\langle\sigma(x) \sigma(0)-\delta(x) \delta(0)\rangle
$$

Cohen（96），Theory Yes！

$$
\chi_{U(1)_{A}}=0, \quad(m \rightarrow 0)
$$

Lee－Hatsuda（96），Theory No！ zero mode contributions are important．

$$
\chi_{U(1)_{A}}=O\left(m^{2}\right)+\Delta \quad \Delta=O(1) \text { at } N_{f}=2: \text { contributions from } Q= \pm 1
$$

Old Lattice results

Chandrasekharan et al．，（98），KS No ！ Bernard，et al．（96），KS No ！

Chiral symmetry is restored．

Recent lattice results

Hegde（HotQCD11），DW No ？！

$$
\chi_{U(1)_{A}}=0 \text { or not } ?
$$

Cossu et al．（JLQCD 2013），Overlap
Phys．Rev．D87（2013） 114514

meson correlators Yes ？！

Buchoff et al．（LLNL／RBC 2013），DWF arXiv：1309．4149［hep－lat］
$\mathrm{U}(1)$ violating susceptibilities
No ？！

Cossu et al．（JLQCD 2013），Overlap Phys．Rev．D87（2013） 114514

$$
\frac{\langle\eta(x) \eta(0)-\pi(x) \pi(0)\rangle}{\langle\pi(x) \pi(0)\rangle}
$$

Yes？

Our work

give constraints on eigenvalue densities of 2－flavor overlap fermions，if chiral symmetry in QCD is restored at finite temperature． discuss a behavior of singlet susceptibility using the constraints．

Content

1．Introduction

2．Overlap fermions

3．Constraints on eigenvalue densities

4．Discussions：singlet susceptibility

2．Overlap fermions

Action

$$
S=\bar{\psi}[D-m F(D)] \psi, \quad F(D)=1-\frac{R a}{2} D
$$

Ginsparg－Wilson relation

$$
D \gamma_{5}+\gamma_{5} D=a D R \gamma_{5} D
$$

Eigenvalue spectrum $\quad \lambda_{n}^{A}+\bar{\lambda}_{n}^{A}=a R \bar{\lambda}_{n}^{A} \lambda_{n}^{A}$

Propagator

$$
\begin{gathered}
S(x, y)=\sum_{n}\left[\frac{\phi_{n}(x) \phi_{n}^{\dagger}(y)}{f_{m} \lambda_{n}-m}+\frac{\gamma_{5} \phi_{n}(x) \phi_{n}^{\dagger}(y) \gamma_{5}}{f_{m} \bar{\lambda}_{n}-m}\right]-\sum_{k=1}^{N_{R+L}} \frac{1}{m} \phi_{k}(x) \phi_{k}^{\dagger}(y)+\sum_{K=1}^{N_{D}} \frac{R a}{2} \phi_{K}(x) \phi_{K}^{\dagger}(y) \\
\text { bulk modes(non-chiral) } \\
\text { zero modes(chiral) }
\end{gathered}
$$

Measure

$$
\begin{gathered}
P_{m}(A)=e^{-S_{Y M}(A)}(-m)^{N_{f} N_{R+L}^{A}}\left(\frac{2}{R a}\right)^{\frac{N_{f} N_{D}^{A}}{} \prod_{\Im \text { of zero modes }}\left(Z_{m}^{2} \bar{\lambda}_{n}^{A} \lambda_{n}^{A}+m^{2}\right)} \\
Z_{m}^{2}=1-(m a)^{2} \frac{R^{2}}{4}
\end{gathered}
$$

positive definite and even function of $m \neq 0$ for even N_{f}
$\mathrm{N} _\mathrm{f}=2$ in this talk．

Ward－Takahashi identities under＂chiral＂rotation $\theta^{a}(x) \delta_{x}^{a} \psi(x)=i \theta^{a}(x) T^{a} \gamma_{5}(1-\operatorname{RaD}) \psi(x)$ ， $\theta^{a}(x) \delta_{x}^{a} \bar{\psi}(x)=i \bar{\psi}(x) \theta^{a}(x) T^{a} \gamma_{5}$,

Integrated operators

$$
S^{a}=\int d^{4} x S^{a}(x), \quad P^{a}=\int d^{4} x P^{a}(x) \quad \begin{aligned}
S^{a}(x) & =\bar{\psi}(x) T^{a} F(D) \psi(x), \\
P^{a}(x) & =\bar{\psi}(x) T^{a} i \gamma_{5} F(D) \psi(x), \quad \text { psealar }
\end{aligned}
$$

$$
\begin{aligned}
& \delta^{a} S^{b}=2 \delta^{a b} P^{0}, \delta^{a} P^{b}=-2 \delta^{a b} S^{0} \\
& \delta^{a} S^{0}=2 P^{a}, \delta^{a} P^{0}=-2 S^{a}
\end{aligned}
$$

If the chiral symmetry is restored，

$$
\lim _{m \rightarrow 0}\left\langle\delta^{a} \mathcal{O}_{n_{1}, n_{2}, n_{3}, n_{4}}\right\rangle_{m}=0
$$

WT identities

$$
\mathcal{O}_{n_{1}, n_{2}, n_{3}, n_{4}}=\left(P^{a}\right)^{n_{1}}\left(S^{a}\right)^{n_{2}}\left(P^{0}\right)^{n_{3}}\left(S^{0}\right)^{n_{4}} \quad N=\sum_{i} n_{i}, \quad \begin{gathered}
n_{1}+n_{2}=\text { odd, } \\
\text { flavor }
\end{gathered} \begin{gathered}
n_{1}+n_{3}=\text { odd } \\
\text { parity }
\end{gathered}
$$

δ^{a} ：flavor non－singlet，parity－odd

$$
\frac{\delta^{a}}{2} \mathcal{O}_{n_{1}, n_{2}, n_{3}, n_{4}}=-n_{1} \mathcal{O}_{n_{1}-1, n_{2}, n_{3}, n_{4}+1}+n_{2} \mathcal{O}_{n_{1}, n_{2}-1, n_{3}+1, n_{4}}-n_{3} \mathcal{O}_{n_{1}, n_{2}+1, n_{3}-1, n_{4}}+n_{4} \mathcal{O}_{n_{1}+1, n_{2}, n_{3}, n_{4}-1}
$$

3．Constraints on eigenvalue densities

Assumption 1 non－singlet chiral symmetry is restored：

$$
\begin{aligned}
& \lim _{m \rightarrow 0} \lim _{V \rightarrow \infty}\left\langle\delta_{a} \mathcal{O}\right\rangle_{m}=0 \quad(\text { for } a \neq 0), \\
&\langle\mathcal{O}(A)\rangle_{m}=\frac{1}{Z} \int \mathcal{D} A P_{m}(A) \mathcal{O}(A), \quad Z=\int \mathcal{D} A P_{m}(A) . \\
& P_{m}(A): \text { even in } m
\end{aligned}
$$

Assumption 2 if $\mathcal{O}(A)$ is m－independent

$$
\langle\mathcal{O}(A)\rangle_{m}=f\left(m^{2}\right) \quad f(x) \text { is analytic at } x=0
$$

Note that this does not hold if the chiral symmetry is spontaneously broken．

Ex．

$$
\lim _{V \rightarrow \infty} \frac{1}{V}\left\langle Q(A)^{2}\right\rangle_{m}=m \frac{\Sigma}{N_{f}}+O\left(m^{2}\right)
$$

Assumption 3 if $\mathcal{O}(A)$ is m－independent and positive，and satisfies

$$
\begin{aligned}
& \lim _{m \rightarrow 0} \frac{1}{m^{2 k}}\langle\mathcal{O}(A)\rangle_{m}=0 \\
& \langle\mathcal{O}(A)\rangle_{m}=m^{2(k+1)} \frac{\int \mathcal{D} A \hat{P}\left(m^{2}, A\right) \mathcal{O}(A)}{\text { finite }} \hat{P}(0, A) \neq 0 \text { for }{ }^{\exists} A
\end{aligned}
$$

consequence for ${ }^{\forall} l$ integer

$$
\left\langle\mathcal{O}(A)^{l}\right\rangle_{m}=m^{2(k+1)} \int \mathcal{D} A \hat{P}\left(m^{2}, A\right) \mathcal{O}(A)^{l}=O\left(m^{2(k+1)}\right)
$$

since $\mathcal{O}(A)$ and $\mathcal{O}(A)^{l}$ are both positive and share the same support．

Assumption 4 eigenvalues density can be expanded as
$\rho^{A}(\lambda) \equiv \lim _{V \rightarrow \infty} \frac{1}{V} \sum_{n} \delta\left(\lambda-\sqrt{\bar{\lambda}_{n}^{A} \lambda_{n}^{A}}\right)=\sum_{n=0}^{\infty} \rho_{n}^{A} \frac{\lambda^{n}}{n!} \quad$ at $\lambda=0(\lambda<\epsilon)$

More precisely，configurations which can not be expanded at the origin are＂measure zero＂in the configuration space．

4．Constraints on eigenvalue densities

Both ρ_{0}^{A} and N_{R+L}^{A} are positive．

$$
\underset{\Im}{\Im}\left\langle\rho_{0}^{A}\right\rangle_{m}=O\left(m^{2}\right)
$$

$$
1 \text { st constraint }
$$

$$
\lim _{V \rightarrow \infty}\left\langle\frac{\left(N_{R+L}^{A}\right)^{N}}{V^{N}}\right\rangle=O\left(m^{N+1}\right) \lim _{V \rightarrow \infty}\left\langle\frac{N_{R+L}}{V}\right\rangle_{m}=0
$$

for small but non－zero m

$$
\begin{aligned}
& \text { general } \mathrm{N}(\text { odd }) \quad \mathcal{O}_{1,0,0, N-1} \quad \lim _{m \rightarrow 0} \lim _{V \rightarrow \infty}\left(-\left\langle\mathcal{O}_{0,0,0, N}\right\rangle_{m}+(N-1)\left\langle\mathcal{O}_{2,0,0, N-2}\right\rangle_{m}\right)=0 \text {. } \\
& \text { large volume } \\
& \frac{1}{V^{N}}\left\langle\left(S_{0}\right)^{N}\right\rangle_{m}=N_{f}^{N}\left\langle\left\{\frac{N_{R+L}^{A}}{m V}+I_{1}\right\}^{N}\right\rangle_{m}+O\left(V^{-1}\right) \rightarrow 0 \quad m \rightarrow 0 \\
& \begin{aligned}
& I_{1}=\frac{1}{Z_{m}} \int_{0}^{\Lambda_{R}} d \lambda \rho^{A}(\lambda) g_{0}\left(\lambda^{2}\right) \frac{2 m_{R}}{\lambda^{2}+m_{R}^{2}}=\pi \rho_{0}^{A}+O(m) \Lambda_{R}=\frac{2}{R a}: \text { cut-off } \\
& g_{0}\left(\lambda^{2}\right)=1-\frac{\lambda^{2}}{\Lambda_{R}^{2}}, m_{R}=m / Z_{m}
\end{aligned}
\end{aligned}
$$

Example of calculations

$$
\begin{gathered}
S(x, y)=\sum_{n}\left[\frac{\phi_{n}(x) \phi_{n}^{\dagger}(y)}{f_{m} \lambda_{n}-m}+\frac{\gamma_{5} \phi_{n}(x) \phi_{n}^{\dagger}(y) \gamma_{5}}{f_{m} \bar{\lambda}_{n}-m}\right]-\sum_{k=1}^{N_{R+L}} \frac{1}{m} \phi_{k}(x) \phi_{k}^{\dagger}(y)+\sum_{K=1}^{N_{D}} \frac{R a}{2} \phi_{K}(x) \phi_{K}^{\dagger}(y) \\
S_{0}=-\int d^{4} x \operatorname{tr} F(D) S(x, x)=-\sum_{n}\left[\frac{F\left(\lambda_{n}\right)}{f_{m} \lambda_{n}-m}+\frac{F\left(\bar{\lambda}_{n}\right)}{f_{m} \bar{\lambda}_{n}-m}\right]+\frac{N_{R+L}^{A}}{m} \\
-\frac{S_{0}}{V}=-\frac{1}{V} \sum_{n}\left[\frac{F\left(\lambda_{n}\right)}{f_{m} \lambda_{n}-m}+\frac{F\left(\bar{\lambda}_{n}\right)}{f_{m} \bar{\lambda}_{n}-m}\right]+\frac{N_{R+L}^{A}}{V m} \\
I_{1}=\frac{1}{Z_{m}} \int_{0}^{\Lambda_{R}} d \lambda \rho^{A}(\lambda) g_{0}\left(\lambda^{2}\right) \frac{2 m_{R}}{\lambda^{2}+m_{R}^{2}}=\pi \rho_{0}^{A}+O(m)
\end{gathered}
$$

$\begin{aligned} \mathrm{N}=2 \quad \chi^{\sigma-\pi} & =\frac{1}{V^{2}}\left\langle S_{0}^{2}-P_{a}^{2}\right\rangle_{m}, \quad \chi^{\eta-\delta}=\frac{1}{V}\left\langle P_{0}^{2}-S_{a}^{2}\right\rangle_{m} \\ & =0\end{aligned}$

$$
\left.\chi^{\eta-\delta}=N_{f}\left\langle\frac{1}{m^{2} V} \frac{\left\{2 N_{R+L}\right.}{=0}-N_{f} Q(A)^{2}\right\}+\underline{\frac{1}{Z_{m}}\left(\frac{I_{1}}{m_{R}}+I_{2}\right)}\right\rangle_{m} \quad \begin{aligned}
& \text { topological charge } \\
& Q(A)=N_{R}^{A}-N_{L}^{A}
\end{aligned}
$$

$$
\frac{I_{1}}{m_{R}}+I_{2}=\rho_{0}^{A}\left(\frac{\pi_{m}}{m}+\frac{2}{\Lambda_{R}}\right)+2 \rho_{1}^{A}+O(m)
$$

$$
\left\langle\rho_{0}^{A}\right\rangle_{m}=O\left(m^{2}\right)
$$

$$
\lim _{m \rightarrow 0} \chi^{\eta-\delta}=0
$$

$$
\lim _{m \rightarrow 0} \frac{N_{f}^{2}\left\langle Q(A)^{2}\right\rangle_{m}}{m^{2} V}=2 \lim _{m \rightarrow 0}\left\langle\rho_{1}^{A}\right\rangle_{m}
$$

WT identities

$$
\begin{aligned}
\left\langle\mathcal{O}_{2001}\right\rangle_{m} & \rightarrow 0, \quad\left\langle-\mathcal{O}_{0201}+2 \mathcal{O}_{1110}\right\rangle_{m} \rightarrow 0, \quad\left\langle\mathcal{O}_{0021}+2 \mathcal{O}_{1110}\right\rangle_{m}=0 \\
\left\langle-\mathcal{O}_{0003}+2 \mathcal{O}_{2001}\right\rangle_{m} & \rightarrow 0, \quad\left\langle\mathcal{O}_{0021}-\mathcal{O}_{0201}+\mathcal{O}_{1110}\right\rangle_{m} \rightarrow 0
\end{aligned}
$$

$$
\left\langle\rho_{0}^{A}\right\rangle_{m}=-\frac{m^{2}}{2}\left\langle\rho_{2}^{A}\right\rangle_{m}+O\left(m^{4}\right)
$$

$$
\lim _{V \rightarrow \infty} \frac{\left\langle Q(A)^{2} \rho_{0}^{A}\right\rangle_{m}}{V}=O\left(m^{4}\right)
$$

$$
\begin{aligned}
\left\langle\mathcal{O}_{4000}-\mathcal{O}_{0004}\right\rangle_{m} \rightarrow 0, & \left\langle\mathcal{O}_{4000}-3 \mathcal{O}_{2002}\right\rangle_{m} \rightarrow 0, \\
\left\langle\mathcal{O}_{0400}-\mathcal{O}_{0040}\right\rangle_{m} \rightarrow 0, & \left\langle\mathcal{O}_{0400}-3 \mathcal{O}_{0220}\right\rangle_{m} \rightarrow 0, \\
\left\langle\mathcal{O}_{2020}-\mathcal{O}_{0202}\right\rangle_{m} \rightarrow 0, & \left\langle\mathcal{O}_{2200}-\mathcal{O}_{0022}\right\rangle_{m} \rightarrow 0, \\
\left\langle 2 \mathcal{O}_{1111}-\right. & \left.\mathcal{O}_{0202}+\mathcal{O}_{0022}\right\rangle_{m} \rightarrow 0 .
\end{aligned}
$$

$$
\square 3 N_{f}^{2}\left\langle\left(I_{2}+I_{1} / m\right)\left(I_{1}-I_{2} / m\right)\right\rangle_{m}+\frac{6 N_{f}^{3}}{m^{3} V}\left\langle Q(A)^{2} I_{1}\right\rangle_{m}-\frac{N_{f}^{4}}{m^{4} V^{2}}\left\langle Q(A)^{4}\right\rangle_{m} \rightarrow 0
$$

$$
: \sim \log m \quad \sim \log m \quad \sim \frac{1}{m^{2}}
$$

$$
\lim _{V \rightarrow \infty} \frac{\left\langle Q(A)^{2}\right\rangle_{m}}{V}=O\left(m^{4}\right):\left\langle\rho_{1}^{A}\right\rangle_{m}=O\left(m^{2}\right)
$$

$\square-3 N_{f}^{2} \frac{\pi^{2}}{m^{2}}\left\langle\left(\rho_{0}^{A}\right)^{2}\right\rangle_{m}-\frac{N_{f}^{4}}{m^{4} V^{2}}\left\langle Q(A)^{4}\right\rangle_{m} \rightarrow 0$ ．negative semi－definite

$$
\begin{aligned}
& \lim _{V \rightarrow \infty} \frac{\left\langle Q(A)^{2}\right\rangle_{m}}{V}=O\left(m^{6}\right) \\
& \left\langle\rho_{0}^{A}\right\rangle_{m}=O\left(m^{4}\right)
\end{aligned}
$$

$$
\left\langle\rho_{0}^{A}\right\rangle_{m}=-\frac{m^{2}}{2}\left\langle\rho_{2}^{A}\right\rangle_{m}
$$

＋result from $\mathrm{N}=4 \mathrm{k}$（general）

Final results

$$
\lim _{m \rightarrow 0}\left\langle\rho^{A}(\lambda)\right\rangle_{m}=\lim _{m \rightarrow 0}\left\langle\rho_{3}^{A}\right\rangle_{m} \frac{|\lambda|^{3}}{3!}+O\left(\lambda^{4}\right)
$$

No constraints to higher $\left\langle\rho_{n}^{A}\right\rangle_{m}$ $\left\langle\rho_{3}^{A}\right\rangle_{m} \neq 0$ even for＂free＂theory．

$$
\begin{gathered}
\left\langle\rho_{0}^{A}\right\rangle_{m}=0 \\
\lim _{V \rightarrow \infty} \frac{1}{V^{k}}\left\langle\left(N_{R+L}^{A}\right)^{k}\right\rangle_{m}=0, \quad \lim _{V \rightarrow \infty} \frac{1}{V^{k}}\left\langle Q(A)^{2 k}\right\rangle_{m}=0
\end{gathered}
$$

5．Discussion：Singlet susceptibility

Singlet susceptibility at high T

$$
\lim _{m \rightarrow 0} \chi^{\pi-\eta}=\lim _{m \rightarrow 0} \lim _{V \rightarrow \infty} \frac{N_{f}^{2}}{m^{2} V}\left\langle Q(A)^{2}\right\rangle_{m}=0
$$

Both Cohen and Lee－Hatsuda are inaccurate．

This，however，does not mean $U(1) _A$ symmetry is recovered at high T ．

$$
\lim _{m \rightarrow 0} \chi^{\pi-\eta}=0
$$

is necessary but NOT＂sufficient＂for the recovery of $U(1) _A$ ．

More general Singlet WT identities

$$
\left\langle\underline{J^{0}} \mathcal{O}+\underline{\delta^{0} \mathcal{O}}\right\rangle_{m}=O(m)
$$

anomaly（measure）singlet rotation
We can show for

$$
\mathcal{O}=\mathcal{O}_{n_{1}, n_{2}, n_{3}, n_{4}}=\left(P^{a}\right)^{n_{1}}\left(S^{a}\right)^{n_{2}}\left(P^{0}\right)^{n_{3}}\left(S^{0}\right)^{n_{4}}
$$

$$
\lim _{V \rightarrow \infty} \frac{1}{V^{k}}\left\langle J^{0} \mathcal{O}\right\rangle_{m}=\lim _{V \rightarrow \infty}\left\langle\frac{Q(A)^{2}}{m V} \times O\left(V^{0}\right)\right\rangle_{m}=0
$$

where k is the smallest integer which makes the $V \rightarrow \infty$ limit finite．

$$
S^{0} \sim O(V), P^{a}, S^{a}, P^{0} \sim O\left(V^{1 / 2}\right)
$$

Important consequence

Effect of $U(1) _A$ anomaly is invisible in scalar and pseudo－scalar sector．

Pisarski－Wilczek argument

Chiral phase transition in 2－flavor QCD is likely to be of first order ！？ （See Taniguchi－san＇s talk in detail．）

Final Comments

1．Large volume limit is required for the correct result．
2．If the action breaks the chiral symmetry，the continuum limit is also required．
3．We only use a part of WT identities．Therefore，our constraints are necessary condition．

4．We can extend our analysis to the eigenvalue density with fractional power． The conclusion remains the same．（See the next page．）

Fractional power for the eigenvalue density

$$
\rho^{A}(\lambda) \simeq c_{A} \lambda^{\gamma}, \gamma>0
$$

If non－singlet chiral symmetry is recovered at high T

$\gamma \leq 2$ is excluded．

consistent with the integer case $(\mathrm{n}>2)$

Part II

Massless up quark and Dashen phase in Chiral Perturbation Theory

with Mike Creutz＠BNL

1．Introduction

θ term in QCD

$$
i \theta \frac{1}{32 \pi^{2}} \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu}(x) F_{\alpha \beta}(x) \equiv i \theta q(x)
$$

CP odd

Neutron Electric Dipole Moment（NEDM）
Experimental bound

$$
\left|\overrightarrow{d_{n}}\right| \leq 6.3 \times 10^{-26} e \cdot \mathrm{~cm} \quad \square \quad \theta=\theta_{\mathrm{QCD}}+\theta_{\mathrm{EW}} \leq O\left(10^{-8}\right)
$$

Model estimate

$$
\left|\overrightarrow{d_{n}}\right| / \theta \simeq 10^{-15} \sim 10^{-17} e \cdot \mathrm{~cm}
$$

Strong CP problem！

One possible＂solution＂$\quad m_{u}=0 \quad$ massless up quark
chiral rotation
$u \rightarrow e^{i \alpha \gamma_{5}} u, \quad \bar{u} \rightarrow \bar{u} e^{i \alpha \gamma_{5}}$,
$m_{u} \bar{u} u \rightarrow m_{u} \bar{u} e^{i 2 \alpha \gamma_{5}} u$
$\theta \rightarrow \theta^{\prime}=\theta+2 \alpha N_{f} \quad$ chiral anomaly
if $m_{u}=0$ ，we can make

$$
\theta^{\prime}=0
$$

$$
\text { by } \alpha=-\frac{\theta}{2 N_{f}}
$$

Mike Creutz，＂Quark masses，the Dashen phase，and gauge field topology＂ arXiv：1306．1245［hep－lat］

Mike＇s Oracles

$m_{d}>0$ fixed，then

1．Nothing special happens at $m_{u}=0$ ．

2．Massless neutral pion：$m_{\pi^{0}}=0$ at $m_{u}={ }^{\exists} m_{c}<0$ ．
3．Pion condensation（Dashen phase）：$\left\langle\pi^{0}\right\rangle \neq 0$ at $m_{u}<m_{c}<0$ ．
4．$\chi=\infty$ at $m_{u}=m_{c}$ ．

$$
\chi=\frac{1}{V}\left\langle Q^{2}\right\rangle \quad \text { topological susceptibility }
$$

5．$\chi=0$ at $m_{u}=0$ ．
In the part II，I show the above properties by ChPT including the anomaly effect． In addition，we discuss an interesting prediction related to these in 2－flavor QCD．

ChPT with＂anomaly＂

$$
\mathcal{L}=\frac{f^{2}}{2} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)-\frac{1}{2} \operatorname{tr}\left(M^{\dagger} U+U^{\dagger} M\right)-\frac{\frac{\Delta}{2}\left(\operatorname{det} U+\operatorname{det} U^{\dagger}\right)}{\text { effect of anomaly }}
$$

Warm－up：$N_{f}=1$ case
naive guess

$$
m_{\mathrm{PS}}^{2}=\frac{2 B}{f^{2}}\left|m_{0}\right|+\delta m^{2}
$$

$$
\left.\begin{array}{l}
V\left(\varphi_{0}\right)=-(m+\Delta) \cos \varphi_{0} \\
\text { potential }
\end{array} \begin{array}{c}
\varphi_{0}=\left\{\begin{array}{cc}
0 & m+\Delta>0 \\
\pi & m+\Delta<0
\end{array}\right. \\
\text { minimum }
\end{array}\right\} \begin{aligned}
U(x)=U_{0} e^{i \pi(x) / f}
\end{aligned} \longrightarrow \quad \mathcal{L}=\frac{1}{2} \partial_{\mu} \pi(x) \partial^{\mu} \pi(x)-(m+\Delta) U_{0} \cos (\pi(x) / f) .
$$

$\Rightarrow \quad m_{\mathrm{PS}}^{2}=\frac{|m+\Delta|}{f^{2}}$
$m=0$ is note special
non－symmetric under $m \rightarrow-m$ massless PS meson at $m=-\Delta$

2．Phase structure and pion masses at $N _f=2$

VEV

$$
\begin{aligned}
\langle\bar{\psi} \psi\rangle & \equiv \frac{1}{2} \operatorname{tr}\left(U_{0}+U_{0}^{\dagger}\right)=2 \cos \left(\varphi_{0}\right) \cos \left(\varphi_{3}\right), & \left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle & \equiv \frac{1}{2 i} \operatorname{tr}\left(U_{0}-U_{0}^{\dagger}\right)=2 \sin \left(\varphi_{0}\right) \cos \left(\varphi_{3}\right), \\
\left\langle\bar{\psi} \tau^{3} \psi\right\rangle & \equiv \frac{1}{2} \operatorname{tr} \tau^{3}\left(U_{0}+U_{0}^{\dagger}\right)=-2 \sin \left(\varphi_{0}\right) \sin \left(\varphi_{3}\right), & \left\langle\bar{\psi} i \gamma_{5} \tau^{3} \psi\right\rangle & \equiv \frac{1}{2 i} \operatorname{tr} \tau^{3}\left(U_{0}-U_{0}^{\dagger}\right)=2 \cos \left(\varphi_{0}\right) \sin \left(\varphi_{3}\right)
\end{aligned}
$$

potential

$$
V\left(\varphi_{0}, \varphi_{3}\right)=-m_{u} \cos \left(\varphi_{0}+\varphi_{3}\right)-m_{d} \cos \left(\varphi_{0}-\varphi_{3}\right)-\Delta \cos \left(2 \varphi_{0}\right)
$$

$$
\begin{aligned}
\frac{\partial V}{\partial \varphi_{0}} & =m_{u} \sin \left(\varphi_{0}+\varphi_{3}\right)+m_{d} \sin \left(\varphi_{0}-\varphi_{3}\right)+2 \Delta \sin \left(2 \varphi_{0}\right)=0 \\
\frac{\partial V}{\partial \varphi_{3}} & =m_{u} \sin \left(\varphi_{0}+\varphi_{3}\right)-m_{d} \sin \left(\varphi_{0}-\varphi_{3}\right)=0
\end{aligned}
$$

gap equations

Solutions

$0<m_{d}<\Delta$

$$
\begin{aligned}
\sin ^{2}\left(\varphi_{3}\right) & =\frac{\left(m_{d}-m_{u}\right)^{2}\left\{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}\right\}}{4 m_{u}^{3} m_{d}^{3}} \\
\sin ^{2}\left(\varphi_{0}\right) & =\frac{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}}{4 m_{u} m_{d} \Delta^{2}}
\end{aligned}
$$

$$
m_{c}^{-}<m_{u}<m_{c}^{+}
$$

Dashen phase

$\Delta<m_{d}$

$$
\begin{aligned}
\sin ^{2}\left(\varphi_{3}\right) & =\frac{\left(m_{d}-m_{u}\right)^{2}\left\{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}\right\}}{4 m_{u}^{3} m_{d}^{3}} \\
\sin ^{2}\left(\varphi_{0}\right) & =\frac{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}}{4 m_{u} m_{d} \Delta^{2}}
\end{aligned}
$$

$$
-m_{c}^{-}<m_{u}<m_{c}^{+}
$$

Dashen phase
$U_{0}= \pm\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad\left(\quad \sin ^{2}\left(\varphi_{3}\right)=\sin ^{2}\left(\varphi_{0}\right)=1 \quad\right):$

$$
m_{u}<-m_{c}^{-}
$$

$$
m_{c}^{ \pm}=-\frac{m_{d} \Delta}{\Delta \pm m_{d}}<0
$$

Phase structure

VEV

PS meson masses

$$
\begin{aligned}
& U(x)=U_{0} e^{i \Pi(x) / f}, \quad \Pi(x)=\left(\begin{array}{cc}
\frac{\eta(x)+\pi_{0}(x)}{\sqrt{2}} & \pi_{-}(x) \\
\pi_{+}(x) & \frac{\eta(x)-\pi_{0}(x)}{\sqrt{2}}
\end{array}\right) \\
& \mathcal{L}^{(2)}=\frac{1}{2}\left\{\left(\partial_{\mu} \pi_{0}(x)\right)^{2}+\left(\partial_{\mu} \eta(x)\right)^{2}+2 \partial_{\mu} \pi_{+}(x) \partial^{\mu} \pi_{-}(x)\right\}+\frac{\delta m}{2 f^{2}} \eta^{2}(x) \\
& +\frac{m_{+}(\vec{\varphi})}{4 f^{2}}\left\{\eta^{2}(x)+\pi_{0}^{2}(x)+2 \pi_{+}(x) \pi_{-}(x)\right\}-\frac{m_{-}(\vec{\varphi})}{2 f^{2}} \eta(x) \pi_{0}(x),(26) \\
& \pi_{0}-\eta \text { mixing } \\
& m_{\pi_{ \pm}}^{2}=\frac{m_{+}(\vec{\varphi})}{2 f^{2}} \quad \text { charged pion } \\
& m_{\tilde{\pi}_{0}}^{2}=\frac{1}{2 f^{2}}\left[m_{+}(\vec{\varphi})+\delta m-X\right] \quad \text { neutral pion } \\
& m_{\tilde{\eta}}^{2}=\frac{1}{2 f^{2}}\left[m_{+}(\vec{\varphi})+\delta m+X\right] \text { eta meson } \\
& X=\sqrt{m_{-}(\vec{\varphi})^{2}+\delta m^{2}}, \\
& m_{ \pm}(\vec{\varphi})=m_{d} \cos \left(\varphi_{0}-\varphi_{3}\right) \pm m_{u} \cos \left(\varphi_{0}+\varphi_{3}\right) \\
& =m_{ \pm} \cos \left(\varphi_{0}\right) \cos \left(\varphi_{3}\right)+m_{\mp} \sin \left(\varphi_{0}\right) \sin \left(\varphi_{3}\right) \text { : } \\
& \delta m=2 \Delta \cos \left(2 \varphi_{0}\right) \text {. } \\
& m_{ \pm}=m_{d} \pm m_{u} .
\end{aligned}
$$

$$
\begin{aligned}
& m_{\pi_{ \pm}}^{2}=\frac{m_{d}-m_{u}}{2 f^{2}}, \quad / \quad m_{\pi^{0}}^{2}=0 \\
& m_{\tilde{\pi}_{0}}^{2}=\frac{m_{-}-\overline{2} \Delta-\sqrt{m_{+}^{2}+4 \Delta^{2}}}{2 f^{2}}, \\
& m_{\tilde{\eta}}^{2}=\frac{m_{--2}^{2}-2 \Delta+\sqrt{m_{+}^{2}+4 \Delta^{2}}}{2 f^{2}} m_{\pi^{0}}^{2}=0 \\
& m_{\pi_{ \pm}}^{2}=\frac{m_{+}}{2 f^{2}}=\frac{m_{u}+m_{d}}{2 f^{2}}, \\
& m_{\tilde{\pi}_{0}}^{2}=\frac{1}{2 f^{2}}\left[m_{+}+2 \Delta-\sqrt{m_{-}^{2}+4 \Delta^{2}}\right], \\
& m_{\tilde{\eta}}^{2}=\frac{1}{2 f^{2}}\left[m_{+}+2 \Delta+\sqrt{m_{-}^{2}+4 \Delta^{2}}\right],
\end{aligned}
$$

$m_{d}=\Delta / 2$

$$
m_{d}=5 \Delta / 2
$$

3．Topological susceptibility and massless up quark

 （anomalous）WT identities$$
\left\langle\left[\partial^{\mu} A_{\mu}^{a}(x)+\bar{\psi}(x)\left\{M, T^{a}\right\} \gamma_{5} \psi(x)-2 N_{f} \delta^{a 0} q(x)\right] \mathcal{O}(y)\right\rangle=\delta^{(4)}(x-y)\left\langle\delta^{a} \mathcal{O}(y)\right\rangle
$$

$$
q(x)=\frac{g^{2}}{16 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} G_{\mu \nu}(x) G_{\alpha \beta}(x), \quad \text { topological charge density }
$$

$\mathcal{O}(y)=q(y)$ with $a=0,3$
Integrating over x

$$
\begin{gathered}
\chi \equiv \int d^{4} x\langle q(x) q(y)\rangle=\frac{2 m_{u}}{N_{f}} \int d^{4} x\left\langle\bar{u} \gamma_{5} u(x) q(y)\right\rangle . \\
? \quad \chi=\infty \text { at } m_{\pi^{0}}=0 \text { and } m_{u} \neq 0 \\
\chi=0 \text { at } m_{\pi^{0}} \neq 0 \text { and } m_{u}=0
\end{gathered}
$$

Anomalous WT identities in $\mathrm{N} _\mathrm{f}=2$ ChPT

$$
\begin{aligned}
& \left\langle\delta_{x} S \mathcal{O}(y)\right\rangle=\delta^{(4)}(x-y)\langle\delta \mathcal{O}(y)\rangle \quad \text { WT identities } \quad \delta U(x)=2 i \theta(x) U(x) . \\
& \delta_{x} S=i \theta(x)\left[\partial^{\mu} A_{\mu}(x)+\operatorname{tr}\left\{M U^{\dagger}(x)-M^{\dagger} U(x)\right\}-\underline{\left.\Delta\left\{\operatorname{det} U(x)-\operatorname{det} U^{\dagger}(x)\right\}\right]}\right. \text {, } \\
& A_{\mu}(x)=f^{2} \operatorname{tr}\left\{U^{\dagger}(x) \partial_{\mu} U(x)-U \partial_{\mu} U^{\dagger}(x)\right\} \quad 2 N_{f} q(x) \text { : topological charge density } \\
& \Rightarrow 2 N_{f} \chi \equiv \int d^{4} x\left\langle\left[\partial^{\mu} A_{\mu}(x)+\operatorname{tr}\left\{M U^{\dagger}(x)-M^{\dagger} U(x)\right\}\right] q(y)\right\rangle \\
& \begin{aligned}
\Rightarrow 2 N_{f} \chi & =\frac{\frac{\Delta^{2}}{4} \int d^{4} x\left\langle\left\{\operatorname{det} U(x)-\operatorname{det} U^{\dagger}(x)\right\}\left\{\operatorname{det} U(y)-\operatorname{det} U^{\dagger}(y)\right\}\right\rangle}{\underline{\frac{\Delta}{2}\left\langle\operatorname{det} U(y)+\operatorname{det} U^{\dagger}(y)\right\rangle},}-\frac{2 \Delta^{2} \int d^{4} x\langle\eta(x) \eta(y)\rangle}{f^{2}}
\end{aligned} \\
& \text { effect of contact term ? }=\Delta \\
& 2 N_{f} \chi=-\frac{4 \Delta^{2} m_{+}(\vec{\varphi})}{m_{+}^{2}(\vec{\varphi})-m_{-}^{2}(\vec{\varphi})+2 m_{+}(\vec{\varphi}) \delta m}+\Delta .
\end{aligned}
$$

$$
\begin{aligned}
& m_{u}=0 \longmapsto m_{+}(\vec{\varphi})=m_{-}(\vec{\varphi})=m_{d} \text { and } \delta m=2 \Delta \\
& 2 N_{f} \chi=-\frac{4 \Delta^{2} m_{d}}{4 m_{d} \Delta}+\Delta=0, \\
& m_{\pi^{0}}^{2}=0 \quad \int \quad \int d^{4} x\langle\eta(x) \eta(y)\rangle=\frac{1}{2 X}\left(\frac{X_{-}}{m_{\pi_{0}}^{2}}+\frac{X_{+}}{m_{\eta}^{2}}\right) \rightarrow \infty \\
& 2 N_{f} \chi \quad \rightarrow \quad-\infty, \quad m_{\tilde{\pi}_{0}} \rightarrow 0,
\end{aligned}
$$

4．Summary and Discussions

Using ChPT with anomaly effect，we show
1．$m_{u}=0$ is nothing special if $m_{d} \neq 0$ ．（no symmetry）
2．At $m_{u}=m_{c}^{ \pm},-m_{c}^{-} \neq 0, m_{\pi^{0}}=0$ ．
3．$\left\langle\pi^{0}\right\rangle \neq 0$ at $m_{c}^{-}\left(-m_{c}^{-}\right)<m_{u}<m_{c}^{+}$．
4．$\chi=\infty$ at $m_{u}=m_{c}$ ．
5．$\chi=0$ at $m_{u}=0$ ．
If $m_{d} \neq 0$ ，massless up quark（ $m_{u}=0$ ）may not be universal（scheme－ dependent）．$\quad m_{+}$and m_{-}are renormalized differently．

Instead，massless up quark may be defined by $\chi=0$ ．
On the lattice，we should first show that χ is universal．
We then check whether $\chi=0$ or not at physical point．

Application

$$
\begin{gathered}
m_{u}=-m_{d}=-m \\
\theta=0
\end{gathered}
$$

$$
\begin{gathered}
m_{u}=m_{d}=m \\
\theta=\pi
\end{gathered}
$$

chiral rotations

$$
\theta_{0}=\theta_{3}=\pi / 4,
$$

Δ

$$
\begin{aligned}
\cos \varphi_{3} & =1 \\
\cos \varphi_{0} & = \begin{cases}1, & 2 \Delta \leq m \\
\frac{m}{2 \Delta}, & -2 \Delta<m<2 \Delta \\
-1, & m \leq-2 \Delta\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle=2 \sin \varphi_{0} \cos \varphi_{3}= \begin{cases}0, & m^{2} \geq 4 \Delta^{2} \\
\pm 2 \sqrt{1-\frac{m^{2}}{4 \Delta^{2}}}, & m^{2}<4 \Delta^{2}\end{cases} \\
\langle\bar{\psi} \psi\rangle=2 \cos \varphi_{0} \cos \varphi_{3}= \begin{cases}2, & 2 \Delta \leq m \\
\frac{m}{\Delta}, & -2 \Delta<m<2 \Delta \\
-2, & m \leq-2 \Delta\end{cases}
\end{gathered}
$$

Spontaneous CP violation！ （eta condensation）

PS meson masses

$$
m_{\pi_{ \pm}}^{2}=m_{\pi_{0}}^{2}=\left\{\begin{array}{cl}
\frac{1}{2 f^{2}} 2|m|, & m^{2} \geq 4 \Delta^{2} \\
\frac{1}{2 f^{2}} \frac{m^{2}}{\Delta}, & m^{2}<4 \Delta^{2}
\end{array} \quad m_{\eta}^{2}=\left\{\begin{array}{cl}
\frac{1}{2 f^{2}}[2|m|-4 \Delta], & m^{2} \geq 4 \Delta^{2} \\
\frac{1}{2 f^{2}} \frac{4 \Delta^{2}-m^{2}}{\Delta}, & m^{2}<4 \Delta^{2}
\end{array},\right.\right.
$$

non－standard PCAC relation！

$m_{\pi}^{2}=\frac{1}{2 f^{2}} \frac{m^{2}}{\Delta}$

$$
\left\langle\left\{\partial^{\mu} A_{\mu}^{3}+m \operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)\right\}(x) \mathcal{O}(y)\right\rangle=\left\langle\delta^{x} \mathcal{O}(y)\right\rangle
$$

taking $\mathcal{O}=\operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)$ and integrating over x

$$
\begin{array}{r}
\Downarrow m \int d^{4} x\left\langle\frac{\operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)(x)}{\operatorname{tr}} \tau^{3}\left(U^{\dagger}-U\right)(y)\right\rangle=-2 \frac{\left\langle\operatorname{tr}\left(U+U^{\dagger}\right)(y)\right\rangle}{=4 \cos \varphi_{0}} \\
=-i \frac{2 \sqrt{2}}{f} \cos \varphi_{0} \pi_{0}(x)
\end{array}
$$

$$
\rightleftharpoons m \frac{\cos ^{2} \varphi_{0}}{f^{2}} \underline{\int d^{4} x\left\langle\pi_{0}(x) \pi_{0}(y)\right\rangle=\cos \varphi_{0}} \quad \longmapsto m_{\pi_{0}}^{2}=\frac{m}{f^{2}} \frac{\cos \varphi_{0}}{m_{\pi_{0}}^{2}} \quad \frac{m}{2 \Delta}
$$

$$
m_{\pi_{0}}^{2}=\frac{m}{f^{2}} \frac{m}{2 \Delta}
$$

one m form WTI，the other m from VEV．

