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1. Introduction

low T high T

Chiral symmetry of QCD

restoration of chiral symmetry

phase transition

Some questions

1. Eigenvalue distribution of Dirac operator 

2. Recovery of U(1)_A symmetry at high T ?

related ?

U(1)B � SU(Nf )V U(1)B � SU(Nf)L � SU(Nf )R
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FIG. 5: Spectral density of the massless overlap-Dirac operator in two-flavor QCD. Top and

bottom panels are the data clearly below and above the critical temperature, respectively. The

middle panel corresponds to those around the transition point. The jackknife errors are shown for

each bin of the histogram. When the histogram is terminated at the lower end, it implies that we

find no eigenmode below that value. The statistical error in that case is also zero, because we use

the jackknife method. The lighter the color the lighter the mass.

argument about the power α and the point where gap opens would not be possible with the

currently available data. There is even a possibility that the gap develops right above the

critical point. Much more extensive data at several quark masses and volumes would be

necessary for a definite conclusion on this point.
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Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor . . . H. Ohno
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Figure 2: The eigenvalue density above Tc. Plus, cross, asterisk, square, circle, triangle, and downward
triangle symbols indicate ρ(λ ) at T =173.0, 177.7, 188.7, 210.6, 239.7, 275.9, and 331.6 MeV, respectively.
The right figure shows a logarithmic plot of the same data for the small λ region. All of the data points for
T = 331.6 MeV are outside of the region shown.

universal scaling function fG(z) as
M = h1/δ fG(z) , (4.1)

with z ≡ t/h1/βδ , where h and t are scaling variables corresponding to a symmetry breaking field
and temperature, respectively, and β and δ are critical exponents. In QCD 〈  ψψ〉 and the (light)
quark mass m are regarded as M and h, respectively. Thus one has the relation

〈  ψψ〉 ∼ m1/δ fG(z) . (4.2)

On the other hand, in the infinite volume limit, 〈  ψψ〉 can be obtained from the eigenvalues of
the Dirac operators as

〈  ψψ〉=−
∫ ∞

0
dλ

2mρ(λ )
λ 2 +m2 . (4.3)

Assuming ρ(λ )∼ Aλα , Eq. (4.3) can be rewritten in the limit m→ 0 as

〈  ψψ〉=−mα
∫ ∞

0
d  λ

2A  λα
 λ 2 +1

, (4.4)

with  λ ≡ λ/m. Thus, by comparing (4.2) to (4.4), α = 1/δ would be expected at Tc in the chiral
limit and α should have a value close to 1/δ for a small enough quark mass and near Tc.

To test this expectation, we fit the eigenvalue density around Tc to the Ansatz ρ(λ ) = Aλα .
Here we set the fit range as [0,λmax]. Since the part of ρ(λ ) with large λ is suppressed due to us
having calculated only a fixed number of low-lying eigenvalues per configuration, the largest λ in
the region without such a suppression effect is chosen as λmax.

Figure 3 shows the temperature dependence of the fit parameters α and A. α increases mono-
tonically as the temperature increases and it has a value close to 1/δ for either the O(2) or O(4)
universality class2 at a temperature not more than 10 MeV below the pseudocritical temperature
for both ml/ms = 1/20 and 1/40. Since we expect that α = 1/δ at Tc only in the chiral limit, the

21/δ for the O(2) and O(4) universality classes are too similar to be distinguishable within our numerical accuracy.
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Ohno et al. (11), HISQ

Is small � suppressed ?

Dirac Eigenvalue Spectrum at Finite Temperature Using DWF Zhongjie Lin
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Figure 4: Dirac eigenvalue spectrum for the T = 150−200 MeV ensembles. Here the temperature is lowest
in the upper left and largest in the lower right. The chiral symmetry breaking density of near zero eigenvalues
disappears rapidly with increasing temperature and for the two highest temperature cases there appears to
be a gap with very few eigenvalues just above zero. The magnified inset in these two cases show some near
zero eigenvalues and a suggestive zero mode peak located at Λ= mf +mres
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Previous studies  on 2

Cohen(96), Theory

�U(1)A
=

�
d4x ��(x)�(0) � �(x)�(0)�

Yes !

Lee-Hatsuda(96), Theory No ! zero mode contributions are  important.

�U(1)A
= O(m2) + � � = O(1) at Nf = 2: contributions from Q = ±1

�U(1)A
= 0, (m� 0)
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Old Lattice results

Bernard, et al. (96), KSChandrasekharan et al., (98), KS No ! No !
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FIG. 2. The quantity ω, which directly measures anomalous symmetry breaking, plotted versus

fermion mass, ma. Also shown are the chiral condensate 〈χ̄χ〉 and the pseudoscalar susceptibility
χP. We studied a 163 × 4 lattice at β = 5.3, just above βc.
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FIG. 1. Phase diagram for the standard SU(3)
Wilson gauge plus two-flavor staggered fermion
action showing the approximate Nt = 6 crossover
location (crosses and burst) as a function of gauge
coupling 6/g2 and quark mass amq. Data sample
points are indicated by octagons. FIG. 2. Chiral order parameters extrapolated in

quark mass squared.

We measure this susceptibility directly from the connected part of the f0 correlator: χconn =
∫

d4x 〈f0(0)f0(r)〉|conn,
while Chandrasekharan and Christ measure it by taking the derivative of 〈f0〉 with respect to the valence quark mass
[6]. Finally, a well-known Ward identity relates the pion susceptibility to the chiral order parameter [11]:

χπ = NfTa2/V
〈

Tr(M †M)−1
〉

= 〈f0〉 /(2mq). (8)

In practice we measure the order parameters (2) through

χSU(2)×SU(2) = 〈f0〉 /(2mq) − χconn − χdisc and χU(1) = 〈f0〉 /(2mq) − χconn (9)

The simulation consisted of a subset of configurations generated in an extensive study of the equation of state for
Nt = 6 and Nf = 2 at 6/g2 = 5.45 and quark masses amq = 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.025 [4,5]. This
parameter range lies in the high temperature phase slightly above the phase transition, as illustrated in Fig. 1, and
was selected to permit an extrapolation of the measured quantities to zero quark mass in the high temperature phase.
The simulation sample at each mass covered a molecular dynamics time span of at least 2000 time units with the first
400 omitted. Measurements were taken at intervals of at most 50 time units. The chiral order parameter 〈f0〉 ≡

〈

ψ̄ψ
〉

was measured using the random source method [12] with 33 random sources. These measurements, with care taken to
avoid biases inherent in the noisy source technique, in turn, provided an estimate of χdisc through the configuration
variance.

III. RESULTS AND CONCLUSIONS

Results are shown in Fig. 2 and table I. We have indicated a linear extrapolation in (amq)2. Because they are
closer to the crossover (Fig. 1), where curvature may be expected, we chose to exclude the two highest mass points
from the fit. The zero mass intercepts are

χSU(2)×SU(2) = 0.04(31) and χU(1) = 0.75(22) (10)

with χ2/df = 2.6/2 and 2.5/2 respectively. Fits to all points gave χSU(2)×SU(2) = −0.33(20) with χ2/df = 5.6/4 and
χU(1) = 0.81(11) with 2.7/4.

It is surprising that a fit of the same points to an expression linear in amq gives a result consistent with a zero
intercept for both order parameters: χSU(2)×SU(2) = 0.15(38) with χ2/df = 1.8/2 and χU(1) = 0.40(56) with 2.4/2. So

3

Chiral symmetry is restored. U(1)A is NOT.
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Looking for U(1)A Restoration Prasad Hegde

depending on the type of correlator being integrated. Furthermore, the disconnected parts of the σ
and η ′ susceptibilities are equal to the disconnected susceptibilities χdisc and χ5,disc viz.

χσ ,disc =
〈

(ψψ)2
〉

−
〈

(ψψ)
〉2 ≡ χdisc and χη ′,disc =

〈

(ψγ5ψ)
2 〉≡ χ5,disc. (3.4)

The appropriate symmetry restoration gives rise to equalities among the different susceptibilities:

χπ = χδ + χdisc and χδ = χπ − χ5,disc.
[

SU(2)L×SU(2)R
]

(3.5a)
χπ = χδ and χδ + χdisc = χπ − χ5,disc.

[

U(1)A
]

. (3.5b)

The difference χπ−χδ must go to zero asU(1)A breaking is suppressed. Eq. (3.5a) tells us that this
difference equals χdisc once chiral symmetry is restored. Moreover, we see that chiral symmetry
restoration implies that χdisc = χ5,disc whereas axial symmetry restoration implies the opposite,
namely χdisc = −χ5,disc. Either way, when both chiral and axial symmetry are restored, one has
χdisc = 0= χ5,disc. In other words,U(1)A restoration is signaled by a vanishing disconnected chiral
susceptibility.
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Figure 4: The susceptibilities χdisc, χ5,disc and χπ − χδ for each of the temperatures. All are very nearly
equal from T = 170 MeV onward. None of these susceptibilities vanishes for all the temperatures shown
here. The red and blue points have been horizontally displaced by ±1 MeV for clarity.

Fig. 4 plots these susceptibilities for each of the temperatures that we studied. Although the
equalities derived in Eqs. (3.5) are strictly valid only in the chiral limit, we see that χdisc, χ5,disc and
χπ − χδ are almost equal to each other from about 170 MeV onwards. Furthermore, none of these
susceptibilities is equal to zero even at T = 200 MeV, the highest temperature that we studied. If
we take Tc ≈ 160 MeV, this would seem to suggest thatU(1)A remains broken even at T ≈ 1.25Tc.

4. The Correlation with Topology

Let us take a closer look at the source of U(1)A violation. If we write the π and δ correlators
(Eqs. (3.1)) in terms of their left- and right-handed components, we get

Cδ/π(x) =
〈

uLdR(x)dRuL(0)+uRdL(x)dLuR(0)
〉

±
〈

uLdR(x)dLuR(0)+uRdL(x)dRuL(0)
〉

.
(4.1)
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Hegde (HotQCD11), DW

Recent lattice results

�U(1)A
= 0 or not ?

meson correlators

No ?!

Yes ?!

FIG. 6: Meson correlators at β = 2.20 (T ! 180 MeV) and β = 2.30 (T ! 208 MeV). Sea quark

masses are am = 0.05, 0.025 and 0.01. Results for the π, δ, η and σ channels are shown. Bands

represent the statistical error.
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FIG. 6. The two U(1)A-violating susceptibility differences, χMS
π − χMS

δ and χMS
σ − χMS

η

plotted as a function of temperature for our three spatial volumes. As expected these quan-

tities are very different below Tc. However, even for temperatures of 160 MeV and above

these quantities differ from zero by many standard deviations, providing clear evidence for

anomalous symmetry breaking above Tc. The near equality of these two differences above

Tc, which are related by SU(2)L × SU(2)R symmetry suggests that the effects of explicit

chiral symmetry breaking are much smaller (as expected) than this anomalous symmetry

breaking.
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Buchoff et al. (LLNL/RBC 2013),  DWF 

No ?!

U(1) violating susceptibilities

arXiv:1309.4149[hep-lat]

Cossu et al. (JLQCD 2013),  Overlap
Phys. Rev. D87 (2013) 114514 
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FIG. 7: Same as Figure 6, but for β = 2.40.
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FIG. 8: (Left panel) Contribution from the disconnected diagram to the iso-singlet pseudo-scalar

correlator. Results at three different quark masses at β = 2.30 are plotted. (Right panel) Relative

contribution of the disconnected diagram to the connected is plotted in a logarithmic scale for some

values of |x|. It shows that the disconnected contribution rapidly vanishes in the chiral limit.

for small quark masses, as shown in right panels of Figure 6. At even higher temperature,

β = 2.40 (T ∼ 240 MeV), the degeneracy is found at higher quark masses (see Figure 7).

These observations are consistent with our interpretation that the near-zero eigenmodes

below, say, 20 MeV are responsible for the splitting of the chiral partners for both iso-singlet

and iso-triplet symmetries.

Figure 8 shows the contribution of the disconnected diagram at β = 2.30. It is clear from

this plot that the disconnected contribution vanishes at smaller quark masses.
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Our work

give constraints on eigenvalue densities of 2-flavor overlap fermions, if chiral 
symmetry in QCD is restored at finite temperature.
discuss a behavior of singlet susceptibility using the constraints. 

1. Introduction

2. Overlap fermions

3. Constraints on eigenvalue densities

4. Discussions: singlet susceptibility 

Content
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2. Overlap fermions

S = �̄[D �mF (D)]�, F (D) = 1� Ra

2
D

Ginsparg-Wilson relation

Action

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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Eigenvalue spectrum

D(A)�A
n = �A

n �A
n

�A
n + �̄A

n = aR�̄A
n �A

n

h

1/Ra 2/Ra
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−1/Ra

1/Ra

x

y

D(A)�5�
A
n = �̄A

n �5�
A
n

zero modes(chiral) doublers(chiral)
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Propagator

Measure

zero modes(chiral) doublers(chiral)bulk modes(non-chiral)

fm = 1 +
Rma

2

Pm(A) = e�SY M (A)(�m)Nf NA
R+L

�
2

Ra

�Nf NA
D �

��A
n >0

�
Z2

m�̄A
n �A

n + m2
�

S(x, y) =
�

n

�
�n(x)�†

n(y)
fm�n �m

+
�5�n(x)�†

n(y)�5

fm�̄n �m

�
�

NR+L�

k=1

1
m

�k(x)�†
k(y) +

ND�

K=1

Ra

2
�K(x)�†

K (y)

Z2
m = 1� (ma)2

R2

4

positive definite and even function of m �= 0 for even Nf

N_f=2 in this talk.

 # of zero modes

# of doublers
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Ward-Takahashi identities under “chiral” rotation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
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〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)
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x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
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xO〉 = 0. (61)
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}
= 2dab

c T c.
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Ja
x = −2itr T aγ5
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1 − R

2
aD

)
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(
1 − R

2
aD

)
(x, x).(68)
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6

scalar

pseudo-scalar

chiral rotation at N_f=2

Integrated operators

Sa =
�

d4xSa(x), P a =
�

d4xP a(x)

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4 N =
�

i

ni, n1 + n2 = odd, n1 + n3 = odd

If the chiral symmetry is restored,

lim
m�0

��aOn1,n2,n3,n4�m = 0

�a

2
On1,n2,n3,n4 = �n1On1�1,n2,n3,n4+1 + n2On1,n2�1,n3+1,n4 � n3On1,n2+1,n3�1,n4 + n4On1+1,n2,n3,n4�1

WT identities

explicit form

�aSb = 2�abP 0, �aP b = �2�abS0

�aS0 = 2P a, �aP 0 = �2Sa

flavor parity
�a: flavor non-singlet, parity-odd
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3. Constraints on eigenvalue densities

Assumption 1 non-singlet chiral symmetry is restored:

C. Basic properties and assumptions

In this subsection, we explicitly give the basic properties and assumptions used in this

paper.

If the SU(2)L × SU(2)R chiral symmetry is restored at T > Tc, we should have

lim
m→0

lim
V →∞

〈δaO〉m = 0 (for a $= 0), (21)

for an arbitrary operator O, where an average over gauge fields is defined by

〈O(A)〉m =
1

Z

∫
DAPm(A)O(A), Z =

∫
DAPm(A). (22)

Here we have put the subscript m to remind the readers of the m-dependence.

In the following analysis, we will normalize the operator O (by multiplying 1/V k with an

integer k ) so that limV →∞〈δaO〉 is well-defined. Note that Pm(A) is positive for even Nf

and
∫
DAPm(A)/Z = 1.

In our analysis, we assume that the vacuum expectation values of m-independent observ-

able O(A) is an analytic function of m2, if the chiral symmetry is restored. Therefore if

O(A) is m-independent and positive for all A, and is shown to satisfies

lim
m→0

1

mk
〈O(A)l0〉m = 0 (23)

with a non-negative integer k and a positive integer l0, we can write

〈O(A)l0〉m = m2([k/2]+1)
∫
DAP̂ (m2, A)O(A)l0 (24)

where [c] is the largest integer not larger than c, P̂ (0, A) $= 0 for ∃A and
∫

DAP̂ (m2, A)O(A)l0 is non-negative and assumed to be finite in the large volume limit. In

other words, the leading m dependence arises from the contribution of configurations which

satisfy P̂ (0, A) $= 0.

Under the above assumption, it is easy to see

〈O(A)l〉m = m2([k/2]+1)
∫

DA P̂ (m2, A)O(A)l = O(m2(k+1)), (25)

for an arbitrary positive integer l, as long as
∫

DAP̂ (m2, A)O(A)l is finite, since O(A)l0 and

O(A)l are both positive and therefore share the same support in the configuration space.
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Assumption 2 if O(A) is m-independent

�O(A)�m = f(m2) f(x) is analytic at x = 0

Pm(A): even in m

Note that this does not hold if the chiral symmetry is spontaneously broken.

Ex. lim
V��

1
V

�Q(A)2�m = m
�
Nf

+ O(m2)
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Assumption 3 if O(A) is m-independent and positive, and satisfies

lim
m�0

1
m2k

�O(A)�m = 0

P̂ (0, A) �= 0 for �A

consequence

�O(A)�m = m2(k+1)

�
DA P̂ (m2, A)O(A)

�O(A)l�m = m2(k+1)

�
DA P̂ (m2, A)O(A)l = O(m2(k+1))

for �l integer

finite

since O(A) and O(A)l are both positive and share the same support.
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�A(�) � lim
V��

1
V

�

n

�

�
��

�
�̄A

n �A
n

�

 

Assumption 4 eigenvalues density can be expanded as

More precisely, configurations which can not be expanded at the origin 
are “measure zero” in the configuration space. 

=
��

n=0

�A
n

�n

n! at � = 0 (� < � )
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general N(odd)

1
V N

�(S0)N �m = NN
f

��
NA

R+L

mV
+ I1

�N�

m

+ O(V �1) � 0
m� 0

I1 =
1

Zm

� �R

0
d� �A(�)g0(�2)

2mR

�2 + m2
R

= ��A
0 + O(m)

g0(�2) = 1� �2

�2
R

, mR = m/Zm

�R = 2
Ra : cut-o�

��A
0 �m = O(m2) 1st constraint

Both �A
0 and NA

R+L are positive.

lim
V��

�
NR+L

V

�

m

= 0

�N for small but non-zero m

4. Constraints on eigenvalue densities
O1,0,0,N�1

C. Contribution from zero modes at general N

Before extending our analysis to higher N , let us discuss the fate of the zero-mode con-

tribution at general N . For this purpose we consider an operator O(N)
a = O1,0,0,N−1, whose

non-singlet chiral WT identity requires

lim
m→0

lim
V →∞

(−〈O0,0,0,N〉m + (N − 1)〈O2,0,0,N−2〉m) = 0. (48)

Its dominant contribution at large volume is

− 1

V N
〈(S0)

N〉m = −NN
f

〈{

(−1)

(
NA

R+L

mV
+ I1

)}N〉

m

+ O(V −1), (49)

and, therefore, from the positivity of NA
R+L and I1,

lim
V →∞

〈(NA
R+L)N〉m
V N

=






O(mN+2) (for even N)

O(mN+1) (for odd N)
. (50)

Since this holds for arbitrary N , and NA
R+L does not explicitly depend on m, we conclude

that

lim
V →∞

〈NA
R+L〉m
V

= 0, (51)

at small but non-zero m.

This result implies that any zero-mode’s contributions to an arbitrary local operator are

measure-zero in the thermodynamical limit, as we have already seen an example in Section I

[17]. Therefore, we hereafter set limV →∞〈NA
R+L〉m/V = 0 even at small but non-zero m.

D. Constraints at N = 2

We next consider the N = 2 case. In this case, two WT identities from O1001 and

O0110 ∈ O(N=1)
a require that the so-called (non-singlet) chiral susceptibilities,

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1

V
〈P 2

0 − S2
a〉m (52)

vanish in the V → ∞ and m → 0 limits at T > Tc. The first one, χσ−π, has been already

examined in the previous subsection.

In a similar way in the N = 1 case, χη−δ can be expressed in terms of eigenvalues as

lim
V →∞

χη−δ = lim
V →∞

〈

−
N2

f

m2V
Q(A)2

〉

m

+ Nf

〈(
I1

m
+ I2

)〉

m
, (53)

13

large volume

lim
V��

�
(NA

R+L)N

V N

�
= O

�
mN+1

�
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Example of calculations

S(x, y) =
�

n

�
�n(x)�†

n(y)
fm�n �m

+
�5�n(x)�†

n(y)�5

fm�̄n �m

�
�

NR+L�

k=1

1
m

�k(x)�†
k(y) +

ND�

K=1

Ra

2
�K(x)�†

K (y)

S0 = �
�

d4x trF (D)S(x, x) = �
�

n

�
F (�n)

fm�n �m
+

F (�̄n)
fm�̄n �m

�
+

NA
R+L

m

S0

V
= � 1

V

�

n

�
F (�n)

fm�n �m
+

F (�̄n)
fm�̄n �m

�
+

NA
R+L

V m

I1 =
1

Zm

� �R

0
d� �A(�)g0(�2)

2mR

�2 + m2
R

= ��A
0 + O(m)
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N=2

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)
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)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

topological charge

=0

=0

��A
0 �m = O(m2)
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N=3

3.4 Constraints at N = 3

We next consider the N = 3 case. WT identities at N = 3 are given by

〈O2001〉m → 0, 〈−O0201 + 2O1110〉m → 0, 〈O0021 + 2O1110〉m = 0,

〈−O0003 + 2O2001〉m → 0, 〈O0021 −O0201 + O1110〉m → 0, (3.29)

as m → 0. By combining these 3-pt functions, we obtain following 5 conditions in the large
volume limit.

χ1

V 2
= −N2

f

〈(
NR+L

mV
+ I1

)(
NR+L

m2V
− I2

)〉

m

→ 0 (3.30)

χ2

V 3
= N3

f

〈(
NR+L

mV
+ I1

)3
〉

m

→ 0 (3.31)

χ3

V
=

〈
−N2

f

N2
R−L

m3V
+ 2Nf

(
NR+L

m3V
+ I3

)〉

m

→ 0 (3.32)

χ4

V 2
= N3

f

〈(
NR+L

mV
+ I1

)
N2

R−L

m2V

〉

m

→ 0 (3.33)

χ5

V 2
=

〈
N2

f

m

(
NR+L

mV
+ I1

)(
NR+L

mV
− I1

)〉

m

→ 0, (3.34)

as m → 0. From the results in the previous subsection, it is easy to see

〈(NA
R+L)2〉m
m3V 2

= O(m),
〈NA

R+LI1〉m
m2V

= O(m2) (3.35)

〈NA
R+LI2〉m
mV

= O(m3), 〈I1I2〉m = O(m), (3.36)

〈(NA
R+L)3〉m
m3V 2

= O(m),
〈(NA

R+L)2I1〉m
m2V

= O(m2), 〈I3
1 〉A = O(m2), (3.37)

〈NA
R+LI2

1 〉m
mV

= O(m3), N2
f
〈Q(A)2〉m

m3V
= 2Nf

ρ̄1

m
, (3.38)

2Nf 〈I3〉m = 2Nf

[
π

2
〈ρA

0 〉m
m2

+
ρ̄1

m
+
π

4
〈ρA

2 〉m
]

(3.39)

〈NA
R+LQ(A)2〉m

m3V 2
= O(m),

〈I2
1 〉m
m

= O(m) (3.40)

〈Q(A)2I1〉m
m2V

= N2
fπ

〈Q(A)2ρA
0 〉m

m2V
,

〈(NA
R+L)2〉m
m3V 2

= O(m). (3.41)

– 8 –

lim
V��

�Q(A)2�A
0 �m

V
= O(m4)

WT identities

��A
0 �m = �m2

2
��A

2 �m + O(m4)
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N=4

where k is an arbitrary positive integer(k = 1, 2, · · · ) while n is an arbitrary non-negative
integer (n = 0, 1, 2, · · · ).

Using these properties, we have

lim
m→0

lim
V →∞

χ1,2,5 = 0, (3.37)

lim
m→0

lim
V →∞

χ3 = πNf lim
m→0

[
〈ρA

0 〉m
m2

+
〈ρA

2 〉m
2

]
, (3.38)

lim
m→0

lim
V →∞

χ4 = πN3
f lim

m→0
lim

V →∞

〈Q(A)2ρA
0 〉m

m2V
. (3.39)

The condition for χ3 gives

〈ρA
0 〉m = −m2 〈ρA

2 〉m
2

+ O(m4). (3.40)

Since 〈ρA
0 〉m is positive from the positivity of 〈ρA(0)〉m, 〈ρA

2 〉m must be negative for small
m from the above condition. The condition for χ4 leads to

〈Q(A)2ρA
0 〉m

m2V
= O(m2). (3.41)

This condition does not necessarily give stronger conditions than 〈Q(A)2〉m = O(m2V ) and
〈ρA

0 〉m = O(m2), since it only requires that a set of gauge configurations which satisfies
both Q(A)2 $= 0 and ρA

0 $= 0 has a weight m4P̂ (A,m2) + O(m6).

3.5 Constraints at N = 4

Eight WT identities at N = 4 give 7 independent constraints that

〈O4000 −O0004〉m → 0, 〈O4000 − 3O2002〉m → 0, (3.42)

〈O0400 −O0040〉m → 0, 〈O0400 − 3O0220〉m → 0, (3.43)

〈O2020 −O0202〉m → 0, 〈O2200 −O0022〉m → 0, (3.44)

〈2O1111 −O0202 + O0022〉m → 0. (3.45)

From O(V 4) contributions, we have

1
V 4

〈S4
0〉m = N4

f

〈{
NA

R+L

mV
+ I1

}4〉

m

→ 0, (3.46)

which leads to

〈(NA
R+L)4〉m
V 4

= O(m6) ⇒
〈(NA

R+L)n〉m
V n

= O(m6) (3.47)

for an arbitrary integer n. Under this condition, other terms automatically vanish since
I1 = πρ0 + O(m). Hereafter we neglect terms which contain one or more NA

R+L, which are
highly suppressed as m → 0.

– 10 –

At O(V 3), there are 3 conditions that

1
V 3

〈P 2
a S2

0〉m → 0,
1

V 3
〈S2

aS2
0〉m → 0,

1
V 3

〈P 2
0 S2

0〉m → 0. (3.48)

The fist condition (with NA
R+L terms omitted) becomes

N3
f
〈I3

1 〉m
m

→ 0, (3.49)

which is automatically satisfied as

〈I3
1 〉m
m

=
〈
{
πρA

0 + O(m)
}3〉m

m
= O(m), (3.50)

since 〈ρA
0 〉m = O(m2). The second one becomes

−N3
f 〈I2

1I2〉m → 0, (3.51)

which is automatically satisfied since

〈I2
1I2〉m = 〈

{
πρA

0 + O(m)
}2

I2〉m = O(m2). (3.52)

The third one, leading to

N3
f

〈
I2
1

{
I1

m
− Q(A)2

m2V

}〉

m

→ 0, (3.53)

is also satisfied, since the first terms vanishes as before and the second one is estimated as

〈I2
1Q(A)2〉m

m2V
=

〈{πρA
0 + O(m)}2Q(A)2〉m

m2V
= O(m2) (3.54)

from eq. (3.41).
At O(V 2) we have

1
V 2

〈S4
a − P 4

0 〉m → 0,
1

V 2
〈S4

a − 3S2
aP 2

0 〉m → 0,
1

V 2
〈P 2

a (P 2
0 − S2

a) − 2PaSaP0S0〉m → 0.

(3.55)

After a little algebra, the first condition becomes

3N2
f 〈(I2 + I1/m)(I1 − I2/m)〉m +

6N3
f

m3V
〈Q(A)2I1〉m −

N4
f

m4V 2
〈Q(A)4〉m → 0. (3.56)

Since

I2 +
I1

m
= ρA

0

(
π

m
+

2
ΛR

)
+ 2ρA

1 + O(m) (3.57)

I2 −
I1

m
= ρA

0

(
− π

m
+

6
ΛR

)
+ ρA

1

(
4 − 2 log

Λ2
R

m2

)
+ O(1) (3.58)

– 11 –

� log m � 1
m2

lim
V��

�Q(A)2�m

V
= O(m4) ��A

1 �m = O(m2)

2nd constraint

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

and 〈(ρA
0 )n〉m = O(m2), the first term is at most logarithmically divergent as m → 0. On

the other hand, the second term vanishes tanks to eq. (3.41). Therefore, in order to satisfy
eq. (3.56), we need at least

lim
V →∞

1
V 2

〈Q(A)4〉m = O(m4) (3.59)

which leads to

lim
V →∞

1
V k

〈Q(A)2k〉m = O(m4) (3.60)

for an arbitrary positive integer k. Combining this with eq. (3.26), we have

〈ρA
1 〉m = O(m2), (3.61)

so that eq. (3.56) now becomes

−3N2
f

π2

m2
〈(ρA

0 )2〉m −
N4

f

m4V 2
〈Q(A)4〉m → 0. (3.62)

Since both terms are negative semidefinite, this WT identity gives

〈(ρA
0 )k〉m = O(m4), lim

V →∞

1
V l

〈Q(A)2l〉m = O(m6) (3.63)

for arbitrary positive integers k and l. The first condition also gives

〈ρA
2 〉m = O(m2) (3.64)

from eq. (3.40). We also show this using a different argument. From eq. (3.61), the
eigenvalues density near chiral limit becomes

〈ρA(λ)〉m = 〈ρA
2 〉m

λ2

2
+ O(λ3) + O(m2). (3.65)

The positivity of 〈ρA(λ)〉m implies 〈ρA
2 〉m ≥ 0 near m = 0. Eq. (3.40) and the fact that

〈ρA
0 〉m is positive at all m, on the other hand, implies that 〈ρA

2 〉m can not become positive
in the chiral limit. Therefore 〈ρA

2 〉m = O(m2) and thus 〈(ρA
0 )〉m = O(m4).

It is now easy to see that the second and third conditions in eq. (3.55) are automatically
satisfied: The second one becomes

3N2
f 〈I2(I2 + I1/m)〉m −

3N3
f

m2V
〈I2Q(A)2〉m = O(m) + O(m4) (3.66)

while the third one is

N2
f 〈(I1/m) (I2 + I1/m)〉m −

3N3
f

m3V
〈I1Q(A)2〉m = O(m) + O(m3). (3.67)

– 12 –

negative semi-definite

��A
0 �m = O(m4)

lim
V��

�Q(A)2�m

V
= O(m6)

��A
2 �m = O(m2)

3rd constraint��A
0 �m = �m2

2
��A

2 �m

� log m
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Final results

lim
m�0

��A(�)�m = lim
m�0

��A
3 �m

|�|3

3!
+ O(�4)

+ result from N=4k (general)

We think that we can not prove 〈ρA
3 〉0 = 0 in general since 〈ρA

3 〉0 #= 0 for the free theory.
Note here that the density of eigenvalues is always defined in the V → ∞ limit.

For discrete zero modes, we have

lim
V →∞

1
V k

〈(NA
R+L)k〉m = 0, lim

V →∞

1
V k

〈Q(A)2k〉m = 0 (3.83)

for an arbitrary positive integer k even at a small but non-zero m.

4. Singlet susceptibilities

In this section, we consider possible constraints to singlet susceptibilities using constraints
obtained in the previous section. It seems that singlet susceptibilities at odd N automat-
ically vanish. We explicitly check this property at N = 1, 3, 5. See appendix B for more
general cases. We therefore consider even N here.

4.1 N = 2 case

At N = 2 a nontrivial singlet susceptibility is given by

χπ−η =
1
V
〈P 2

a − P 2
0 〉m = lim

V →∞

N2
f

m2V
〈Q(A)2〉m = 0. (4.1)

Therefore the singlet susceptibility vanishes at this order.

4.2 N=4

From Appendix B, there are two non-trivial susceptibilities at N = 4 , which is given by

χ6 = 〈O0022 −O2002〉m, χ7 = 〈O0022 −O0220〉m (4.2)

See Appendix B. Since we can neglect NA
R+L/V and Q(A)2/V terms in the large N limit,

we have

lim
m→0

lim
V →∞

χ6

V 3
= − lim

m→0
lim

V →∞
N3

f

〈
NfQ(A)2

m2V

(
NA

R+L

mV
+ I1

)2〉

m

= 0, (4.3)

lim
m→0

lim
V →∞

χ7

V 3
= lim

m→0
lim

V →∞

N3
f

m

〈(
NA

R+L

mV
+ I1

)2 (
NA

R+L

mV
+ I1 −

NfQ(A)2

mV

)〉

m

= lim
m→0

N3
f

m

〈
I3
1

〉
m

. (4.4)

The second term also vanishes as

〈I3
1 〉m = 〈

(
πρA

1 + O(m)
)3〉m = O(m3). (4.5)

We therefore conclude that leading order contributions in V for the singlet susceptibilities
vanish also at N = 4.

– 15 –

No constraints to higher ��A
n �m

��A
3 �m �= 0 even for ”free” theory.

��A
0 �m = 0
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5. Discussion: Singlet susceptibility

Singlet susceptibility at high T

Both Cohen and Lee-Hatsuda are inaccurate.

This, however, does not mean U(1)_A symmetry is recovered at high T.

is necessary but NOT “sufficient” for the recovery of U(1)_A .

lim
m�0

���� = 0

lim
m�0

���� = lim
m�0

lim
V��

N2
f

m2V
�Q(A)2�m = 0
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More general Singlet WT identities

�J0O + �0O�m = O(m)
anomaly(measure) singlet rotation

We can show for

where k is the smallest integer which makes the V �� limit finite.

lim
m�0

lim
V��

1
V k

��0O�m = 0

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4O =

lim
V��

1
V k

�J0O�m = lim
V��

�
Q(A)2

mV
� O(V 0)

�

m

= 0

Breaking of U(1)_A symmetry is absent for these “bulk quantities”.

S0 � O(V ), P a, Sa, P 0 � O(V 1/2)
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Important consequence

Effect of U(1)_A anomaly is invisible in scalar and pseudo-scalar sector.

Pisarski-Wilczek argument

Chiral phase transition in 2-flavor QCD is likely to be of first order !?
(See Taniguchi-san’s talk in detail.)

Final Comments

1. Large volume limit is required for the correct result.

2. If the action breaks the chiral symmetry, the continuum limit is also required. 

3. We only use a part of WT identities. Therefore, our constraints are necessary 
condition.
4. We can extend our analysis to the eigenvalue density with fractional power. 
The conclusion remains the same. (See the next page.)
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Fractional power for the eigenvalue density

�A(�) � cA�� , � > 0

If non-singlet chiral symmetry is recovered at high T

� � 2 is excluded. � > 2

consistent with the integer case (n > 2)
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Part II

Massless up quark and Dashen phase 
in Chiral Perturbation Theory

with Mike Creutz @ BNL
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1. Introduction

 term in QCDθ iθ
1

32π2
ε
µναβ

Fµν(x)Fαβ(x) ≡ iθq(x) CP odd

Neutron Electric Dipole Moment(NEDM) 

Model estimate

| !dn|/θ ! 10
−15 ∼ 10

−17e · cm

| !dn| ≤ 6.3 × 10
−26

e · cm

Experimental bound
{

θ = θQCD + θEW ≤ O(10−8)

Strong CP problem !

One possible “solution” mu = 0 massless up quark

chiral rotation

chiral anomaly

mu ūu� mu ūei2��5u

if mu = 0, we can make

� � �� = � + 2�Nf

�� = 0

by � = � �
2Nf

(Lattice QCD already ruled out this ?)

u� ei��5u, ū� ūei��5 ,
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Mike Creutz, “Quark masses, the Dashen phase, and gauge field topology” 
arXiv:1306.1245[hep-lat]

Mike’s Oracles

md > 0 fixed, then

1. Nothing special happens at mu = 0.

2. Massless neutral pion: m�0 = 0 at mu =� mc < 0 .

3. Pion condensation (Dashen phase): ��0� �= 0 at mu < mc < 0.

4. � =� at mu = mc.
� =

1
V

�Q2� topological susceptibility

5. � = 0 at mu = 0.

In the part II, I show the above properties by ChPT including the anomaly effect. 
In addition, we discuss an interesting prediction related to these in 2-flavor QCD.
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ChPT with “anomaly”

Note: Massless up quark and Dashen phase in
ChPT

Sinya AOKI

January 16, 2014

1 Introduction

We explicitly demonstrate various claims in ”Quark masses, the Dashen phase,
and gauge field topology”(M. Creutz, arXiv:1306.1245), using 2-flavor ChPT
with the anomaly contribution. In addition, we propose to define ”massless up
quark” from the vanishing topological susceptibility χ.

1.1 ChPT analysis

In this report, we use the following Chiral perturbation theory (ChPT) La-
grangian at the leading order with the effect of anomaly through the determinate
term as

L =
f2

2
tr
(
∂µU∂µU†)− 1

2
tr
(
M†U + U†M

)
− ∆

2
(
det U + detU†) , (1)

where f is the pion decay constant, M is a quark mass matrix, and ∆ is a
positive constant, which give an additional mass to an eta meson. Differences
between an ordinary ChPT and the above theory we consider are the presence of
the determinate term, which breaks U(1) axial symmetry, thus representing the
anomaly effect, and field U ∈ U(Nf ) instead of U ∈ SU(Nf ). As long as ∆ is
reasonably small, the above Lagrangian well describes physics of pseudo-scalar
mesons at low energy.

1.2 Warm-up: Nf = 1 case

As a warm-up excise, we consider Nf = case here. Due to the U(1) axial
anomaly, the pseudo-scalar meson becomes massive even for the ”massless”
quark. Naively one might expect a behavior that

m2
PS =

2B

f2
m0 + δm2, (2)

where mPS is the pseudo-scalar meson mass, m0 is the quark mass, B is a
constant related to the chiral condensate, and δm2 represents the anomaly effect,

1

effect of anomaly

Note: Massless up quark and Dashen phase in
ChPT

Sinya AOKI

January 16, 2014
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L =
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tr
(
∂µU∂µU†)− 1
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tr
(
M†U + U†M

)
− ∆
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(
det U + detU†) , (1)

where f is the pion decay constant, M is a quark mass matrix, and ∆ is a
positive constant, which give an additional mass to an eta meson. Differences
between an ordinary ChPT and the above theory we consider are the presence of
the determinate term, which breaks U(1) axial symmetry, thus representing the
anomaly effect, and field U ∈ U(Nf ) instead of U ∈ SU(Nf ). As long as ∆ is
reasonably small, the above Lagrangian well describes physics of pseudo-scalar
mesons at low energy.

1.2 Warm-up: Nf = 1 case

As a warm-up excise, we consider Nf = case here. Due to the U(1) axial
anomaly, the pseudo-scalar meson becomes massive even for the ”massless”
quark. Naively one might expect a behavior that

m2
PS =

2B

f2
m0 + δm2, (2)

where mPS is the pseudo-scalar meson mass, m0 is the quark mass, B is a
constant related to the chiral condensate, and δm2 represents the anomaly effect,

1

naive guess

m0

No massless “pion”(eta)
m2

PS =
2B

f2
|m0| + �m2

m2
PS

�m2
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reality

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have

ϕ0 =
{

0 m + ∆ > 0
π m + ∆ < 0 . (4)

We then expand U around U0 as

U(x) = U0e
iπ(x)/f , (5)

so that

L =
1
2
∂µπ(x)∂µπ(x) − (m + ∆)U0 cos (π(x)/f)

=
1
2

[
(∂µπ(x))2 +

|m + ∆|
f2

π(x)2
]

+ O(π4) (6)

We then obtain

m2
PS =

|m + ∆|
f2

, (7)

showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.

2 Phase structure and pion masses at Nf = 2

2.1 Phase structure

We take

M =
(

mu 0
0 md

)
≡ 2B

(
m0u 0
0 m0d

)
, (8)

where we assume mu ≤ md without loss of generality.
We first determine the vacuum structure, assuming

U = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3

)
, (9)

2

vacuum ansatz

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have
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[
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π(x)2
]

+ O(π4) (6)

We then obtain

m2
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, (7)

showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.
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2

potential

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have

ϕ0 =
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We then expand U around U0 as
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so that
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showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.
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M =
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U = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3

)
, (9)

2

minimum

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have
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2

PS meson field

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
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V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have
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showing that m2
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PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
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where we assume mu ≤ md without loss of generality.
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U = U0 = eiϕ0

(
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, (9)

2

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have

ϕ0 =
{

0 m + ∆ > 0
π m + ∆ < 0 . (4)

We then expand U around U0 as

U(x) = U0e
iπ(x)/f , (5)

so that

L =
1
2
∂µπ(x)∂µπ(x) − (m + ∆)U0 cos (π(x)/f)

=
1
2

[
(∂µπ(x))2 +

|m + ∆|
f2

π(x)2
]

+ O(π4) (6)

We then obtain

m2
PS =
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, (7)

showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.

2 Phase structure and pion masses at Nf = 2

2.1 Phase structure

We take

M =
(

mu 0
0 md

)
≡ 2B

(
m0u 0
0 m0d

)
, (8)

where we assume mu ≤ md without loss of generality.
We first determine the vacuum structure, assuming

U = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3
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, (9)
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2. Phase structure and pion masses at N_f=2

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have

ϕ0 =
{

0 m + ∆ > 0
π m + ∆ < 0 . (4)

We then expand U around U0 as

U(x) = U0e
iπ(x)/f , (5)

so that

L =
1
2
∂µπ(x)∂µπ(x) − (m + ∆)U0 cos (π(x)/f)

=
1
2

[
(∂µπ(x))2 +

|m + ∆|
f2

π(x)2
]

+ O(π4) (6)

We then obtain

m2
PS =

|m + ∆|
f2

, (7)

showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.

2 Phase structure and pion masses at Nf = 2

2.1 Phase structure

We take

M =
(

mu 0
0 md

)
≡ 2B

(
m0u 0
0 m0d

)
, (8)

where we assume mu ≤ md without loss of generality.
We first determine the vacuum structure, assuming

U = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3

)
, (9)

2

mass term 

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have

ϕ0 =
{

0 m + ∆ > 0
π m + ∆ < 0 . (4)

We then expand U around U0 as

U(x) = U0e
iπ(x)/f , (5)

so that

L =
1
2
∂µπ(x)∂µπ(x) − (m + ∆)U0 cos (π(x)/f)

=
1
2

[
(∂µπ(x))2 +

|m + ∆|
f2

π(x)2
]

+ O(π4) (6)

We then obtain

m2
PS =

|m + ∆|
f2

, (7)

showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.

2 Phase structure and pion masses at Nf = 2

2.1 Phase structure

We take

M =
(

mu 0
0 md

)
≡ 2B

(
m0u 0
0 m0d

)
, (8)

where we assume mu ≤ md without loss of generality.
We first determine the vacuum structure, assuming

U = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3

)
, (9)

2vacuum
which is related to various VEV as

〈ψ̄ψ〉 ≡ 1
2
tr (U0 + U†

0 ) = 2 cos(ϕ0) cos(ϕ3), (10)

〈ψ̄τ3ψ〉 ≡ 1
2
tr τ3(U0 + U†

0 ) = −2 sin(ϕ0) sin(ϕ3), (11)

〈ψ̄iγ5ψ〉 ≡ 1
2i

tr (U0 − U†
0 ) = 2 sin(ϕ0) cos(ϕ3), (12)

〈ψ̄iγ5τ
3ψ〉 ≡ 1

2i
tr τ3(U0 − U†

0 ) = 2 cos(ϕ0) sin(ϕ3). (13)

In terms of U0, the effective potential is given by

V (ϕ0,ϕ3) = −mu cos(ϕ0 + ϕ3) − md cos(ϕ0 − ϕ3) − ∆ cos(2ϕ0), (14)

and the gap equations become

∂V

∂ϕ0
= mu sin(ϕ0 + ϕ3) + md sin(ϕ0 − ϕ3) + 2∆ sin(2ϕ0) = 0 (15)

∂V

∂ϕ3
= mu sin(ϕ0 + ϕ3) − md sin(ϕ0 − ϕ3) = 0. (16)

Trivial solutions are given by ϕ0 = ϕ3 = 0,π or ϕ0 = π−ϕ3 = 0,π, correspond-
ing to U0 = ±12×2.

Non-trivial solutions, where CP is spontaneously broken(the Dashcen phase),
should satisfy

mumd sin(ϕ3) = −m−∆ sin(ϕ0), mumd cos(ϕ3) = −m+∆ cos(ϕ0),(17)

where m± = md ± mu.
For 0 < md < ∆, we have

sin2(ϕ3) =
(md − mu)2{(mu + md)2∆2 − m2

um2
d}

4m3
um3

d

(18)

sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (19)

at m−
c < mu < m+

c (the Dashen phase) where

m±
c = − md∆

∆ ± md
< 0, (20)

while U0 = 1 for mu > m+
c and U0 = −1 for mu < m−

c . Note that sin2(ϕ3) = 1
at md + mu = 0 and sin2(ϕ3) = sin2(ϕ0) = 0 at (mu + md)∆ = ±mumd.

For md > ∆, we have a little complicated phase structure. At mu > m+
c ,

U0 = 1 as before. The Daschen phase appears as

sin2(ϕ3) =
(md − mu)2{(mu + md)2∆2 − m2

um2
d}

4m3
um3

d

(21)

sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (22)
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while U0 = 1 for mu > m+
c and U0 = −1 for mu < m−

c . Note that sin2(ϕ3) = 1
at md + mu = 0 and sin2(ϕ3) = sin2(ϕ0) = 0 at (mu + md)∆ = ±mumd.
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at −m−
c < mu < m+

c , where

−m−
c = − md∆

md − ∆
< 0. (23)

Note that sin2(ϕ3) = sin2(ϕ0) = 1 at mu = −m−
c .

A new phase appear at mu < −m−
c , where the minimum of the potential is

given by

U0 = ±
(

1 0
0 −1

)
, ( sin2(ϕ3) = sin2(ϕ0) = 1 ), (24)

which however do not satisfy the gap equation. While flavor symmetry is max-
imally broken, the CP symmetry is recovered since U0 is real, and mu = −m−

c

is the second order phase transition point which separates two phases. We call
this region a ”maximally flavor braking phase” without CP violation.
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Figure 1: Phase structure in mu-md plain with ∆ = 1, where the Dashen phase
with ϕ0,ϕ3 "= 0,π are shaded in blue, while the phase with ϕ0 = ϕ3 = ±π/2
are shaded in red. Note that ϕ3 = ±π/2 also on mu + md = 0.
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given by
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)
, ( sin2(ϕ3) = sin2(ϕ0) = 1 ), (24)

which however do not satisfy the gap equation. While flavor symmetry is max-
imally broken, the CP symmetry is recovered since U0 is real, and mu = −m−
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is the second order phase transition point which separates two phases. We call
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which is related to various VEV as
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2
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〈ψ̄iγ5τ
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0 ) = 2 cos(ϕ0) sin(ϕ3). (13)

In terms of U0, the effective potential is given by

V (ϕ0,ϕ3) = −mu cos(ϕ0 + ϕ3) − md cos(ϕ0 − ϕ3) − ∆ cos(2ϕ0), (14)

and the gap equations become
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∂V

∂ϕ3
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Trivial solutions are given by ϕ0 = ϕ3 = 0,π or ϕ0 = π−ϕ3 = 0,π, correspond-
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Non-trivial solutions, where CP is spontaneously broken(the Dashcen phase),
should satisfy
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where m± = md ± mu.
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at m−
c < mu < m+

c (the Dashen phase) where

m±
c = − md∆

∆ ± md
< 0, (20)

while U0 = 1 for mu > m+
c and U0 = −1 for mu < m−

c . Note that sin2(ϕ3) = 1
at md + mu = 0 and sin2(ϕ3) = sin2(ϕ0) = 0 at (mu + md)∆ = ±mumd.

For md > ∆, we have a little complicated phase structure. At mu > m+
c ,

U0 = 1 as before. The Daschen phase appears as
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PS meson masses

In Fig. 1, the phase structure is given in mu-md plain in these case of ∆ = 1,
where CP violating phase (Dashen phase) with ϕ0,ϕ3 != 0,π are shaded in blue,
while the maximally flavor braking phase with ϕ0 = ϕ3 = ±π/2 is shaded in
red.

We plot VEV such as 〈ψ̄ψ〉, 〈ψ̄iγ5ψ〉, 〈ψ̄iγ5τ3ψ〉 and 〈ψ̄τ3ψ〉 in Fig. 2 for
three cases that md < ∆, ∆ < md < 2∆ and 2∆ < md.
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Figure 2: mu dependence of VEV: 〈ψ̄ψ〉 (blue), 〈ψ̄iγ5ψ〉 (black), 〈ψ̄iγ5τ3ψ〉
(red) and −〈ψ̄τ3ψ〉 (green) at ∆ = 1. (Top-Left) md = 0.5 < ∆. The CP
broken phase appears at m−

c < md < m+
c . (Top-Right) ∆ < md = 1.5 < 2∆.

The CP broken phase appears at −m−
c < md < m+

c , while the maximally flavor
braking phase at mu < −m−

c . cos(ϕ3) = 0 at mu = −md = −1.5. (Bottom)
md = 2.5 > 2∆. The CP broken phase appears at −m−

c < md < m+
c , while the

maximally flavor braking phase at mu < −m−
c .

2.2 Pion masses

To calculate PS meson masses, we expand U as U(x) = U0eiΠ(x)/f , where

Π(x) =





η(x) + π0(x)√
2

π−(x)

π+(x)
η(x) − π0(x)√

2



 (25)

with a neutral pion π0 = π3, charged pion π± = π1 ± iπ2 and an eta meson η.
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where CP violating phase (Dashen phase) with ϕ0,ϕ3 != 0,π are shaded in blue,
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c . cos(ϕ3) = 0 at mu = −md = −1.5. (Bottom)
md = 2.5 > 2∆. The CP broken phase appears at −m−
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c , while the
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2.2 Pion masses

To calculate PS meson masses, we expand U as U(x) = U0eiΠ(x)/f , where

Π(x) =





η(x) + π0(x)√
2

π−(x)

π+(x)
η(x) − π0(x)√

2



 (25)

with a neutral pion π0 = π3, charged pion π± = π1 ± iπ2 and an eta meson η.
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At the second order of Π(x), the Lagrangian becomes

L(2) =
1
2
tr ∂µΠ(x)∂µΠ(x) +

1
4f2

tr (M†U0 + U†
0M)Π(x)2

+
∆

4f2
(detU0 + detU†

0 ) (tr Π(x))2

=
1
2
{
(∂µπ0(x))2 + (∂µη(x))2 + 2∂µπ+(x)∂µπ−(x)

}
+
δm

2f2
η2(x)

+
m+(%ϕ)

4f2

{
η2(x) + π2

0(x) + 2π+(x)π−(x)
}
− m−(%ϕ)

2f2
η(x)π0(x),(26)

where

m±(%ϕ) = md cos(ϕ0 − ϕ3) ± mu cos(ϕ0 + ϕ3)
= m± cos(ϕ0) cos(ϕ3) + m∓ sin(ϕ0) sin(ϕ3), (27)

δm = 2∆ cos(2ϕ0). (28)

While the mass of charged pion mπ± is simply given by

m2
π± =

m+(%ϕ)
2f2

=
m+ cos(ϕ0) cos(ϕ3) + m− sin(ϕ0) sin(ϕ3)

2f2
, (29)

the mass term for π0 and η becomes
1

2f2
(π0(x), η(x))

(
m+(%ϕ) −m−(%ϕ)
−m−(%ϕ) m+(%ϕ) + δm

)(
π0(x)
η(x)

)
. (30)

By diagonalizing the above mass term, we obtain

m2
π̃0

=
1

2f2
[m+(%ϕ) + δm − X] , X =

√
m−(%ϕ)2 + δm2, (31)

m2
η̃ =

1
2f2

[m+(%ϕ) + δm + X] , (32)

whose eigenvectors are given by
(
π̃0(x)
η̃(x)

)
= U−1

(
π0(x)
η(x)

)
=

1√
2X

(
X1/2

+ π0(x) + X1/2
− η(x)

X1/2
− π0(x) − X1/2

+ η(x)

)
,(33)

where

U−1 = U =
1√
2X

(
X1/2 X1/2

−
X1/2

− −X1/2
+

)
, X± = X ± δm. (34)

We consider behaviors of PS meson masses in each region. Since U0 = 1 at
mu ≥ m+

c , we have m±(%ϕ) = m± and δm = 2∆, which imply

m2
π± =

m+

2f2
=

mu + md

2f2
, (35)

m2
π̃0

=
1

2f2

[
m+ + 2∆ −

√
m2

− + 4∆2

]
, (36)

m2
η̃ =

1
2f2

[
m+ + 2∆ +

√
m2

− + 4∆2

]
, (37)
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which is related to various VEV as
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2
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0 ) = 2 cos(ϕ0) cos(ϕ3), (10)

〈ψ̄τ3ψ〉 ≡ 1
2
tr τ3(U0 + U†

0 ) = −2 sin(ϕ0) sin(ϕ3), (11)

〈ψ̄iγ5ψ〉 ≡ 1
2i

tr (U0 − U†
0 ) = 2 sin(ϕ0) cos(ϕ3), (12)

〈ψ̄iγ5τ
3ψ〉 ≡ 1

2i
tr τ3(U0 − U†

0 ) = 2 cos(ϕ0) sin(ϕ3). (13)

In terms of U0, the effective potential is given by
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∂V
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um2
d}

4m3
um3

d
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sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (19)
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c = − md∆

∆ ± md
< 0, (20)
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4m3
um3

d
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d
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, (22)
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6
so that m2

π̃0
= 0 at the phase boundary that mu = m+

c .
Similarly at mu ≤ m−

c with md < ∆, we have m±(!ϕ) = −m± and δm = 2∆,
which give

m2
π± = −m+

2f2
= −mu + md

2f2
, (38)

m2
π̃0

=
1

2f2

[
−m+ + 2∆ −

√
m2

− + 4∆2

]
, (39)

m2
η̃ =

1
2f2

[
−m+ + 2∆ +

√
m2

− + 4∆2

]
, (40)

so that m2
π̃0

= 0 at the other phase boundary that mu = m−
c . Note that m+ < 0

in this case.
At −|m−

c | < mu < m+
c , we have

m+(!ϕ) = −mumd

∆
(41)

m−(!ϕ) = −mumd

∆
m2

− cos2(ϕ3) + m2
+ sin2(ϕ3)

m+m−
= −∆(m2

d − m2
u)

mumd
(42)

δm = 2∆ cos(2ϕ0) =
m2

um2
d − (m2

u + m2
d)∆

2

mumd∆
. (43)

For the neutral pion mass, in particular, a massless condition that m+(!ϕ)+δm =√
m−(!ϕ)2 + δm2 with

m+(!ϕ) + δm = −∆(m2
u + m2

d)
mumd

(44)

m−(!ϕ)2 + δm2 =
2∆4(m4

d + m4
u) − 2(m2

u + m2
d)m

2
um2

d∆
2 + m4

um4
d

m2
um2

d∆2
(45)

implies mu = m+
c ,−|m−

c |. Therefore m2
π̃0

= 0 at these phase boundaries (
mu = m+

c and mu = −|m−
c |).

In the maximally flavor breaking phase at mu < −m−
c for md > ∆, where

ϕ3 = ϕ0 = ±π/2, we have

m±(!ϕ) = m∓, δm = −2∆, (46)

which lead to

m2
π± =

md − mu

2f2
, (47)

m2
π̃0

=
m− − 2∆ −

√
m2

+ + 4∆2

2f2
, (48)

m2
η̃ =

m− − 2∆ +
√

m2
+ + 4∆2

2f2
. (49)
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3. Topological susceptibility and massless up quark

which agree with the results obtained in the original description. The flavor
singlet η appears as the massless mode associated with the P and CP violating
phase transition at m2 = 4∆2.

2.3.3 2-degenerate flavor QCD with θ = π

Results in the previous sub-subsections suggest an interesting possibility for 2-
degenerate flavor QCD with θ = π, where θ is the coefficient of the FF̃ term.
By the chiral rotation in the previous sub-subsection, we can transform θ = π
to θ = 0 but mu = md = m to mu = −md = −m. In this case we have massless
η at m2 = 4∆2, while three pions becomes massless at m = 0. Results around
m2 = 4∆2 by ChPT analysis might not be reliable if ∆ is large. Since results
around m = 0 can be trusted, however, we can conclude at least that (1) P and
CP are spontaneously broken at small m region and (2) three pions are lighter
than η around m = 0 but they behave m2

π = m2/(f2∆), contrary to PCAC
relation that m2

π = |m|/f2 .

3 Topological susceptibility and massless up quark

3.1 Anomalous WT identities in Nf = 2 QCD

In Nf -flavor QCD, axial Ward-Takahashi identities read

〈
[
∂µAa

µ(x) + ψ̄(x){M, T a}γ5ψ(x) − 2Nfδ
a0q(x)

]
O(y)〉 = δ(4)(x − y)〈δaO(y)〉

for an arbitrary operator O, where Aa
µ = ψ̄γ5γµψ is the axial-vector current,

T a is the flavor matrix, M is the mass matrix, q(x) is the topological charge
density defined by

q(x) =
g2

16π2
εµναβGµν(x)Gαβ(x), (69)

and δa is the infinitesimal local chiral rotation of flavor a. At Nf = 2 with the
diagonal mass matrix M , the above WT identities for O(y) = q(y) with a = 0, 3
lead to

〈
[
∂µ(A0

µ(x) + A3
µ(x)) + 4muū(x)γ5u(x) − 2Nfq(x)

]
q(y)〉 = 0. (70)

Integrating over x, we obtain

χ ≡
∫

d4x 〈q(x)q(y)〉 =
2mu

Nf

∫
d4x 〈ūγ5u(x)q(y)〉 . (71)

Therefore, if no massless mode appears at mu = 0 (but md %= 0), χ = 0, while χ
diverges if a neutral pion becomes massless at mu %= 0, as pointed out in Ref.[1].
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Anomalous WT identities in N_f=2 ChPT
3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as

−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)

12

3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as

−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)

12

3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as

−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)

12

WT identities

3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as

−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)

12

2Nfq(x): topological charge density

3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as

−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)

12

3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as
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∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
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2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
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+
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4. Summary and Discussions
Using ChPT with anomaly effect, we show

1. mu = 0 is nothing special if md �= 0. (no symmetry)

2. At mu = m±
c ,�m�

c �= 0, m�0 = 0.

3. ��0� �= 0 at m�
c (�m�

c ) < mu < m+
c . Dashen phase

4. � =� at mu = mc.

5. � = 0 at mu = 0.

If md �= 0, massless up quark (mu = 0) may not be universal (scheme-
dependent).

Instead, massless up quark may be defined by � = 0.

We then check whether � = 0 or not at physical point.

m+ and m� are renormalized di�erently.

Staggered quark ?

On the lattice, we should first show that � is universal.
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Application

mu = �md = �m

� = 0 � = �

chiral rotations

mu = md = m

M =
�
�m 0
0 m

�
M � = V †

LMVR =
�

m 0
0 m

�

so that

〈ψ̄τ3ψ〉 = −2 sin(ϕ0) =






2, m ≥ 2δ

m

∆
, −2∆ < m < 2∆

−2 m ≤ −2∆

(52)

〈̄iγ5ψτ
3ψ〉 = 2 cos(ϕ0) =






0, m2 ≥ 4∆2

√
4∆2 − m2

∆
, m2 < 4∆2

. (53)

This shows that the parity (and CP) is spontaneously broken at m2 < 4∆2,
while the flavor symmetry is always broken in the τ2 direction.

Since m−(&ϕ) = 0, PS meson masses are simply given by

m2
π± = m2

π0
=

m+(&ϕ)
2f2

(54)

m2
η =

m+(&ϕ) + 2δm
2f2

(55)

where

m+(&ϕ) = 2m sin(ϕ0), δm = 2∆(1 − 2 sin2(&ϕ0)). (56)

Note that the isospin symmetry among three pions still holds for their masses.
We therefore obtain

m2
π± = m2

π0
=






1
2f2

2|m|, m2 ≥ 4∆2

1
2f2

m2

∆
, m2 < 4∆2

, (57)

m2
η =






1
2f2

[2|m|− 4∆] , m2 ≥ 4∆2

1
2f2

4∆2 − m2

∆
, m2 < 4∆2

, (58)

where η becomes massless at phase boundaries that m2 = 4∆2, showing that η
is the massless mode associated with the P and CP violating phase transition,
while three pions becomes massless only at m = 0.

2.3.2 Isospin symmetric description

Under the chiral transformation that U → VLUV †
R, the mass term transforms

as M → V †
LMVR. By taking

VR = ei(θ0+θ3τ3) = V †
L , (59)

9with θ0 = θ3 = π/4, we have

M =
(

mu 0
0 md

)
→ M =

(
−mu 0

0 md

)
, ∆ → −∆, (60)

so that the original system is equivalent to mu = md = m with −∆. The
effective potential, given by

V (ϕ0,ϕ3) = −∆ + 2 cosϕ0(∆ cosϕ0 − m cosϕ3), (61)

leads to

cosϕ3 = 1 (62)

cosϕ0 =






1, 2∆ ≤ m

m

2∆
, −2∆ < m < 2∆

−1, m ≤ −2∆

. (63)

This implies

〈ψ̄iγ5ψ〉 = 2 sinϕ0 cosϕ3 =






0, m2 ≥ 4∆2

±2

√
1 − m2

4∆2
, m2 < 4∆2

, (64)

〈ψ̄ψ〉 = 2 cosϕ0 cosϕ3 =






2, 2∆ ≤ m

m

∆
, −2∆ < m < 2∆

−2, m ≤ −2∆

, (65)

which shows that P and CP symmetries are spontaneously broken at m2 < 4∆2,
while isospin symmetry holds.

PS meson masses, given by eqs. (54) and (80) with

m+(&ϕ) = 2m cosϕ0 cosϕ3, m−(&ϕ) = 0, δm = −2∆(2 cos2 ϕ0 − 1) (66)

lead to

m2
π± = m2

π0
=






1
2f2

2|m|, m2 ≥ 4∆2

1
2f2

m2

∆
, m2 < 4∆2

, (67)

m2
η =






1
2f2

[2|m|− 4∆] , m2 ≥ 4∆2

1
2f2

4∆2 − m2

∆
, m2 < 4∆2

, (68)
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PS meson masses

with θ0 = θ3 = π/4, we have

M =
(

mu 0
0 md

)
→ M =

(
−mu 0

0 md

)
, ∆ → −∆, (60)

so that the original system is equivalent to mu = md = m with −∆. The
effective potential, given by

V (ϕ0,ϕ3) = −∆ + 2 cosϕ0(∆ cosϕ0 − m cosϕ3), (61)

leads to

cosϕ3 = 1 (62)

cosϕ0 =






1, 2∆ ≤ m

m

2∆
, −2∆ < m < 2∆

−1, m ≤ −2∆

. (63)

This implies

〈ψ̄iγ5ψ〉 = 2 sinϕ0 cosϕ3 =






0, m2 ≥ 4∆2

±2

√
1 − m2

4∆2
, m2 < 4∆2

, (64)

〈ψ̄ψ〉 = 2 cosϕ0 cosϕ3 =






2, 2∆ ≤ m

m

∆
, −2∆ < m < 2∆

−2, m ≤ −2∆

, (65)

which shows that P and CP symmetries are spontaneously broken at m2 < 4∆2,
while isospin symmetry holds.

PS meson masses, given by eqs. (54) and (80) with

m+(&ϕ) = 2m cosϕ0 cosϕ3, m−(&ϕ) = 0, δm = −2∆(2 cos2 ϕ0 − 1) (66)

lead to

m2
π± = m2

π0
=






1
2f2

2|m|, m2 ≥ 4∆2

1
2f2

m2

∆
, m2 < 4∆2

, (67)

m2
η =






1
2f2

[2|m|− 4∆] , m2 ≥ 4∆2

1
2f2

4∆2 − m2

∆
, m2 < 4∆2

, (68)
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m2
� =

1
2f2

m2

�
How can we get this from WT-identities ?

�{�µA3
µ + m tr�3(U † � U)}(x)O(y)� = ��xO(y)�

taking O = tr �3(U † � U) and integrating over x

m

�
d4x �tr �3(U † � U)(x) tr �3(U † � U)(y)� = �2�tr(U + U †)(y)�

= 4 cos�0
= �i

2
�

2
f

cos�0 �0(x)

=
1

m2
�0

m2
�0

=
m

f2
cos�0m

cos2 �0

f2

�
d4x��0(x)�0(y)� = cos�0

=
m

2�

m2
�0

=
m

f2

m

2� one m form WTI, the other m from VEV.
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