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1 Introduction

♢ Solvable matrix models for 2D quantum gravity or noncritical string theories

were vigorously investigated around 1990.

• as toy models for critical string theories, in particular focused on

nonperturbative aspects.

• But, little has been known about (solvable) matrix models corresponding to

noncritical superstrings with target-space SUSY.

We would like to consider such matrix models.

• We hope our analysis helpful to analyze matrix models for critical

superstrings.
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♢ A simple SUSY matrix model we will discuss: [Kuroki-F.S. 2009]

SMM = Ntr

[
1

2
B2 + iB(ϕ2 − µ2) + ψ̄(ϕψ + ψϕ)

]
,

where
B,ϕ : Bosonic

ψ, ψ̄ : Fermionic

}
N ×N hermitian matrices.

• SUSY:

Qϕ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0,

Q̄ϕ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0.

⇒ Q2 = Q̄2 = {Q, Q̄} = 0 (nilpotent)

• B, ψ, ψ̄ integrated out

SMM→ Ntr
1

2
(ϕ2 − µ2)2 − ln det(ϕ⊗ 11N + 11N ⊗ ϕ)
↑

Double-well scalar potential
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♢ Large-N saddle point equation for ρ(x) ≡ 1
N
tr δ(x− ϕ):∫

dy ρ(y) P
1

x− y
+

∫
dy ρ(y) P

1

x+ y
= x3 − µ2x

SUSY preserving large-N solution with filling fraction (ν+, ν−): → Fig. 1

(ν+ + ν− = 1) [Kuroki-F.S. 2009]

ρ(x) =

{
ν+
π
x
√
(x2 − a2)(b2 − x2) (a < x < b)

ν−
π
|x|
√

(x2 − a2)(b2 − x2) (−b < x < −a)

with a =
√
µ2 − 2, b =

√
µ2 + 2.

• Exists for µ2 > 2.

(SUSY breaking one-cut solution for µ2 < 2. [Kuroki-F.S. 2010])
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Figure 1: Double-well scalar potential.

• (large-N free energy) = 0,
⟨

1
N
trBn

⟩
= 0 (n = 1, 2, · · · )

strongly suggest that SUSY is preserved.

Note that trBn = Q tr (iψ̄Bn−1) = Q̄ tr(iψBn−1).

⇒ The SUSY minima are infinitely degenerate, parametrized by (ν+, ν−).
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♢ In this talk,

• we compute correlation functions of this matrix model (in section 2).

(→ Logarithmic critical behavior)

• We discuss correspondence between the matrix model and 2D type IIA

superstring theory on a nontrivial RR background (in sections 3 & 4).

• Summary and Discussions so far (in section 5).

• We compute nonperturbative effects in the matrix model, and observe that

the SUSY is spontaneously broken in the double scaling limit (in section 6).

⇓
In the type IIA theory,

SUSY is dynamically broken by a nonperturbative effect.
� �
To our knowledge, 1st explicit and analytic result for SUSY breaking by non-

perturbative dynamics in superstring theory� �
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♢ The logarithmic critical behavior is somewhat reminiscent of

the c = 1 matrix model (matrix quantum mechanics) [Kazakov-Migdal 1988]

or the Penner model (zero-dimensional matrix model). [Distler-Vafa 1991]

ZPenner =

∫
dN

2
M exp[Nt tr{M + ln(1−M)}]

⇒ We expect

Our matrix model ∼ a SUSY version of the Penner model

∼ 2D superstring with target-space SUSY.
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Note:

• This matrix model is equivalent to the O(n = −2) model on a random

surface [Kostov 1989]:

ZO(n) =

∫
dN

2
ϕ e−NtrV (ϕ) det(ϕ⊗ 11N + 11N ⊗ ϕ)−n/2

with V (ϕ) = 1
2
(ϕ2 − µ2)2.

• Its critical behavior is described by c = −2 topological gravity (i.e.

Gaussian one-matrix model). [Kostov-Staudacher 1992]

• It is easily seen by the Nicolai mapping H = ϕ2.

[Kostov 1990, Gaiotto-Rastelli-Takayanagi 2004]

Partition function in the (ν+, ν−) sector becomes

Z
(ν+,ν−)
MM ⇒ (−1)ν−N

∫
H+

dN
2
H eNtr 1

2(H−µ
2)2.

But, the H-integration is over positive definite hermitian matrices.

8



trϕ2n or trBn can be treated within the topological gravity (Gaussian

one-matrix model) in 1
N
-expansion.

Boundary effect cannot be seen.

However, trϕ2n+1, trψ2n+1, tr ψ̄2n+1 etc are not observables in the

topological gravity.

• trϕ2n+1 = trHn+1
2 is singular at the origin.

• (trψ2n = tr ψ̄2n = 0.)

Actually, we see nontrivial logarithmic critical behavior for these operators.
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2 Planar correlation functions

⟨
1

N
trϕn

⟩
0

=

∫
dxxnρ(x)

= (ν+ + (−1)nν−) (2 + µ2)n/2 F

(
−
n

2
,
3

2
, 3;

4

2 + µ2

)
• reduces to a polynomial of µ2 for n even:⟨

1

N
trϕ2

⟩
0

= µ2,

⟨
1

N
trϕ4

⟩
0

= 1 + µ4, · · · .

(c = −2 topological gravity)

• exhibits logarithmic singular behavior as µ2→ 2 for n odd:

ω ≡ 1
4
(µ2 − 2)⟨

1

N
trϕ2k+1

⟩
0

= (ν+ − ν−)
[
(const.)ωk+2 lnω + (less singluar)

]
.
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• We also computed planar two- and three-point functions for

Φ2k+1 ∼ 1
N
trϕ2k+1.

The results so far suggest

⟨Φ2k1+1 · · ·Φ2kn+1⟩C,0 = (ν+ − ν−)n(const.)ω2−γ+
∑n
i=1(ki−1)(lnω)n

+(less singular)

with γ = −1.
↖ string susceptibility of c = −2 topological gravity

(nontrivial)

We will see that 2D superstring theory reproduces higher powers of lnω due

to a RR-background.

• For fermions (Ψ2k+1 ∼ 1
N
trψ2k+1, Ψ̄2k+1 ∼ 1

N
tr ψ̄2k+1), ...
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3 2D type IIA superstring [Kutasov-Seiberg 1990, Ita-Nieder-Oz 2005]

• (Target space) = (x, φ),

where x ∈ S1 with self-dual radius (R = 1) and φ: Liouville.

(↖Same as the Penner model!)

• Holomorphic EM tensor (except ghost part) on string worldsheet:

Tm = −
1

2
(∂x)2 −

1

2
ψx∂ψx −

1

2
(∂φ)2 +

Q

2
∂2φ−

1

2
ψℓ∂ψℓ

with Q = 2.

• Target-space SUSY is nilpotent.

q+(z) = e−
1
2ϕ−

i
2H−ix(z), Q+ =

∮
dz

2πi
q+(z),

q̄−(z̄) = e−
1
2ϕ̄+

i
2H̄+ix̄(z̄), Q̄− =

∮
dz̄

2πi
q̄−(z̄),

where ψℓ ± iψx =
√
2e∓iH .

⇒ Q2
+ = Q̄2

− = 0. (← Same as the matrix model!)
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• Vertex operators (holomorphic sector):

NS sector (−1)-picture : Tk(z) = e−ϕ+ikx+pℓφ(z)

R sector (−1
2
)-picture : Vk, ϵ(z) = e−

1
2ϕ+

i
2ϵH+ikx+pℓφ(z)

with ϵ = ±1.

Locality with supercurrents, mutual locality, superconformal inv., level

matching

⇒ physical vertex operators (on-shell particles)

pℓ = 1− |k|
k = ϵ|k|
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Winding background: [Ita-Nieder-Oz 2005]

(NS, NS) : Tk(z) T̄−k(z̄) (k ∈ Z +
1

2
) “tachyon”

winding

(R+, R−) : Vk,+1(z) V̄−k,−1(z̄) (k =
1

2
,
3

2
, · · · )

(R−, R+) : V−k,−1(z) V̄k,+1(z̄) (k = 0, 1, 2, · · · )
RR 2-form field strength

winding

(NS, R−) : T−k(z) V̄−k,−1(z̄) (k =
1

2
,
3

2
, · · · ) fermion(−)

momentum

(R+, NS) : Vk,+1(z) T̄k(z̄) (k =
1

2
,
3

2
, · · · ) fermion(+)

momentum

Note: We omit details of cocycle factors.
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♢ Let us assume the correspondence of supercharges between the matrix model

and the type IIA theory:

(Q, Q̄)⇔ (Q+, Q̄−).

⇒ SUSY transformation properties etc lead to

Φ1 =
1

N
trϕ ⇔ c0 g

2
s

∫
d2z V1

2,+1(z) V̄−1
2,−1

(z̄) (R+, R−),

Ψ1 =
1

N
trψ ⇔ d0 g

2
s

∫
d2z T−1

2
(z) V̄−1

2,−1
(z̄) (NS, R−),

Ψ̄1 =
1

N
tr ψ̄ ⇔ d̄0 g

2
s

∫
d2z V1

2,+1(z) T̄1
2
(z̄) (R+, NS),

1

N
tr(−iB) ⇔ g2s

∫
d2z T−1

2
(z) T̄1

2
(z̄) (NS, NS).

Quartet w.r.t. (Q, Q̄) ⇔ Quartet w.r.t. (Q+, Q̄−)

c0, d0, d̄0 : numerical consts. , 1
N
⇔ gs
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Furthermore, it is natural to extend it to higher k(= 1, 2, · · · ) as

Φ2k+1 =
1

N
trϕ2k+1 + (mixing) ⇔ ck g

2
s

∫
d2z Vk+1

2,+1(z) V̄−k−1
2,−1

(z̄),

Ψ2k+1 =
1

N
trψ2k+1 + (mixing) ⇔ dk g

2
s

∫
d2z T−k−1

2
(z) V̄−k−1

2,−1
(z̄),

Ψ̄2k+1 =
1

N
tr ψ̄2k+1 + (mixing) ⇔ d̄k g

2
s

∫
d2z Vk+1

2,+1(z) T̄k+1
2
(z̄),

(Single trace operators in the matrix model) ⇔ (Integrated vertex operators in IIA)

(Powers of matrices) ⇔ (Windings or Momenta)
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Note:

• RR 2-form field strength in (R−, R+) is a singlet under the target-space

SUSYs Q+, Q̄−, and appears to have no matrix-model counterpart.

• Expectation values of operators with nonzero Ramond charge (e.g.

⟨Φ2k+1⟩0) are nonvanishing in the matrix model.

⇒ The matrix model is considered to correspond to IIA on a background of the

RR 2-form.

Let us check the correspondence by computing amplitudes in IIA theory.
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4 Correspondence between the matrix model and the IIA theory

♢ Correlation functions among integrated vertex operators in IIA on the trivial

background:⟨∏
i

Vi

⟩
=

1

Vol.(CKV)

∫
D(x, φ,H, ghosts) e−SCFTe−Sint

∏
i

Vi,

SCFT =
1

2π

∫
d2z

[
∂x∂̄x+ ∂φ∂̄φ+

Q

4

√
ĝR̂φ+ ∂H∂̄H + (ghosts)

]
,

Sint = ω

∫
d2z T

(0)

−1
2

(z)T̄
(0)
1
2

(z̄) (← 0-picture (NS, NS) “tachyon”)
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4 Correspondence between the matrix model and the IIA theory

♢ Correlation functions among integrated vertex operators in IIA on the trivial

background:⟨∏
i

Vi

⟩
=

1

Vol.(CKV)

∫
D(x, φ,H, ghosts) e−SCFTe−Sint

∏
i

Vi,

SCFT =
1

2π

∫
d2z

[
∂x∂̄x+ ∂φ∂̄φ+

Q

4

√
ĝR̂φ+ ∂H∂̄H + (ghosts)

]
,

Sint = ω

∫
d2z T

(0)

−1
2

(z)T̄
(0)
1
2

(z̄) (← 0-picture (NS, NS) “tachyon”)

♢ Correlation functions in IIA on (R−, R+) background:⟨⟨∏
i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
,
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whereWRR is invariant under the target-space SUSYs:

WRR = (ν+ − ν−)
∑
k∈Z

ak ω
k+1VRR

k , (ak : numerical consts.)

VRR
k ≡


∫
d2z Vk,−1(z)V̄−k,+1(z̄) (pℓ = 1− |k|, k = 0,−1,−2, · · · )

∫
d2z V

(nonlocal)
−k,−1 (z)V̄

(nonlocal)
k,+1 (z̄) (pℓ = 1 + |k|, k = 1, 2, · · · ).

Note

• We treat the RR background for (ν+ − ν−) small as exponentiated vertex

operators: (Picture should be adjusted by hand.)⟨⟨∏
i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
=
∞∑
n=0

1

n!

⟨(∏
i

Vi

)
(WRR)

n

⟩
.
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♢ Standard Liouville theory computation for amplitudes leads to:

• ⟨Ntr(−iB) Φ2k+1⟩cylinder = −
1

4
∂ω ⟨Φ2k+1⟩disk ∼ (ν+ − ν−)ωk+1 lnω

⇕

Ng−2s

⟨⟨
1

4

(∫
T−1

2
T̄1

2

) (
ckg

2
s

∫
Vk+1

2,+1V̄−k−1
2,−1

)⟩⟩
= Nck

1

4
(ν+ − ν−)

∑
ℓ∈Z

aℓ ω
ℓ+1

⟨(∫
T−1

2
T̄1

2

) (∫
Vk+1

2,+1V̄−k−1
2,−1

)
VRR
ℓ

⟩
= −Nck

1

2
(ν+ − ν−) ak (ωk+1 lnω) ei2πβ(−k

2−1
2k+

1
4)

↑
cocycle factor

(β ∈ Z + 1
2
).
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Similarly,

• ⟨Φ2k1+1Φ2k2+1⟩cylinder ∼
1

N2
(ν+ − ν−)2 ωk1+k2+1(lnω)2

⇕

Ng−2s

⟨⟨(
ck1g

2
s

∫
Vk1+1

2,+1V̄−k1−1
2,−1

) (
ck2g

2
s

∫
Vk2+1

2,+1V̄−k2−1
2,−1

)⟩⟩
= Ng2sck1ck2

1

2
(ν+ − ν−)2

∑
ℓ1,ℓ2∈Z

aℓ1aℓ2 ω
ℓ1+ℓ2+2

×
⟨(∫

Vk1+1
2,+1V̄−k1−1

2,−1

) (∫
Vk2+1

2,+1V̄−k2−1
2,−1

)
VRR
ℓ1
VRR
ℓ2

⟩
= Ng2scL ck1ck2 (ν+ − ν−)

2 2π ak1+k2 a−1

(
(k1 + k2)!

k1!k2!

)2

ωk1+k2+1(lnω)2

×e−iπβ{(k1+
1
2)

2+(k2+
1
2)

2+(k1+k2)
2+1}

with appropriate regularization of resonant singularities by the Liouville volume

cL(−2 lnω).

• ⟨Ψ2k1+1Ψ2k2+1⟩cylinder ...
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Regularization:

For example, the formula for 4-pt. amplitude∫
d2z zαz̄ᾱ(1− z)β(1− z̄)β̄ = π

Γ(ᾱ+ 1)Γ(β̄ + 1)

Γ(ᾱ+ β̄ + 2)

Γ(−α− β − 1)

Γ(−α)Γ(−β)
with

α = ᾱ = k3k4 − pℓ3pℓ4 = k1 + k2,

β = β̄ = k2k4 − pℓ2pℓ4 −
1

2
= −k1 − 1, (k1, k2 = 0, 1, 2, · · · )

is indefinite.

We regularize it as

α→ α+ ϵ, ᾱ→ ᾱ+ ϵ, β → β + ϵ, β̄ → β̄ + ϵ

with 1/ϵ = cL(−2 lnω), and get the result π
2

(
(k1+k2)!
k1!k2!

)2
cL(−2 lnω).

• This regularization preserves the mutual locality of vertex operators, i.e. does

not change α− ᾱ and β − β̄.
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Remarks:

• Computation in the type IIA side reproduces the (ν+ − ν−)-dependence
and the ω-dependence in the matrix model result.

• Moreover, relations among numerical coefficients seem consistent.

In particular,

ĉk = ĉ0 e
γk(2k + 1)!, âk =

â0 e
−γk

k!(k + 1)!
(k = 0, 1, 2, · · · )

with γ: const, ĉk ≡ ck e−iπβ(k+
1
2)

2
, âk ≡ ak e−iπβk

2
,

d0d̄0 =
1

4
c0 → consistent with SUSY.

• Higher powers of lnω comes from resonances among external particles and

the (R−,R+) background.
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5 Summary and discussions so far

♢ We computed correlation functions in the double-well SUSY matrix model,

and discussed its correspondence to 2D type IIA superstring theory on

(R−,R+) background by computing amplitudes in both sides.

This is an interesting example of matrix models for superstrings with

target-space SUSY, in which various amplitudes are explicitly calculable.

♢ Matrix-model counterpart of positive-winding “tachyons” Tk−1
2
T̄−k+1

2

(k = 1, 2, · · · )?
Similar to the Kontsevich-Penner model (introducing an external matrix source)?

[Imbimbo-Mukhi 1995]

♢ Other amplitudes (higher genus, higher point)?

♢ Case of (ν+ − ν−) not small?

Related to black-hole (cigar) target space? cf. [Hori-Kapustin 2001]
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♢ Higher dimensional Cases (D = 4, 6, 8, 10)? (Liouville)×S1 × RD−2

[Kutasov-Seiberg 1990]
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6 Nonperturbative SUSY breaking in the matrix model

♢ SUSY double-well matrix model

SMM = Ntr

[
1

2
B2 + iB(ϕ2 − µ2) + ψ̄(ϕψ + ψϕ)

]
.

After integrating out matrices other than ϕ, the partition function is expressed

in terms of eigenvalues λi (i = 1, · · · , N ) as

Z = C̃N

∫ ( N∏
i=1

dλi

)
△(λ)2

N∏
i,j=1

(λi + λj) e
−N

∑N
i=1

1
2(λ

2
i−µ

2)2

=
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
Z(ν+,ν−),

where the partition function in the (ν+, ν−) sector is defined by the integration

region ∫ ∞
0

ν+N∏
i=1

dλi

∫ 0

−∞

N∏
j=ν+N+1

dλj.
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By λj → −λj (j = ν+N + 1, · · · , N ), it is easy to see

Z(ν+,ν−) = (−1)ν−N Z(1,0).

Thus, the total partition function vanishes:

Z =
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
Z(ν+,ν−) = (1 + (−1))N Z(1,0) = 0.

⇒ Expectation values normalized by ZMM become ill-defined.
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Let us regularize it as

Zα ≡
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
e−iαν−NZ(ν+,ν−) = (1− e−iα)N Z(1,0).

♢ Order parameter of spontaneous SUSY breaking:⟨
1

N
tr(iB)

⟩
α

=

⟨
1

N
tr (ϕ2 − µ2)

⟩
α

=
1

N2

1

Zα

∂

∂(µ2)
Zα

=

⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)

← VEV taken in the (1,0) sector

is independent of α and well-defined in the limit α→ 0.

29



6.1 Orthogonal Polynomials

Under the change of variables xi = λ2
i − µ2, Z(1,0) reduces to a Gaussian

matrix model

Z(1,0) = C̃N

∫ ∞
−µ2

(
N∏
i=1

dxi

)
△(x)2 e−N

∑N
i=1

1
2x

2
i .

Orthogonal polynomials

Pn(x) = xn +

n−1∑
i=0

p(i)n x
i (n = 0, 1, 2, · · · )

(Pn, Pm) ≡
∫ ∞
−µ2

dx e−
N
2 x

2
Pn(x)Pm(x) = hnδn,m

satisfy the recursion relations

xPn(x) = Pn+1(x) + SnPn(x) +RnPn−1(x), hn = Rnhn−1.
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For example,

h0 =

√
2π

N

[
1−

1

2
erfc

(√
N

2
µ2

)]
, S0 = −p(0)1 =

1

Nh0

e−
N
2 µ

4
, · · · .

Note:

The coefficients Sn, Rn are expressed by the boundary value of the orthogonal

polynomials:

Sn =
1

N

1

hn
Pn(−µ2)2 e−

N
2 µ

4
,

Rn =
n

N
+

1

N

1

hn−1
Pn(−µ2)Pn−1(−µ2) e−

N
2 µ

4
.

What we want to compute is⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)

=
1

N

N−1∑
n=0

Sn.
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6.2 One-instanton contribution

Let us take into account the boundary effect iteratively.

Boundary⇔ Local maximum of the double-well potential 1
2
(λ2 − µ2)2

n eigenvalues on the local maximum⇒ n-instanton configuration

[Hanada et al 2004]

If we could ignore the boundary effect, the orthogonal polynomials would reduce

to the Hermite polynomials

P (H)
n (x) =

1

(2N)n/2
Hn

(√
N

2
x

)
, Hn(x) ≡ (−1)n ex2

dn

dxn
e−x

2
,

h(H)
n =

√
2π

n!

Nn+1
2

.
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♢ The 1st order approximation (⇔ one-instanton effect):

Sn⇒ S(H)
n ≡

1

N

1

h
(H)
n

P (H)
n (−µ2)2 e−

N
2 µ

4
.

Then, ⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)
∣∣∣∣∣
1−inst.

=
1

N

N−1∑
n=0

S(H)
n .

Relevant formulas
n−1∑
k=0

1

2kk!
Hk(x)

2 =
1

2n (n− 1)!

[
Hn(x)

2 −Hn−1(x)Hn+1(x)
]

and

e−x
2/2Hn(x) = π

1
42

n
2+

1
4n−

1
12

√
n!
[
Ai(s) +O(n−2/3)

]
(n ∼ ∞)

for x =
√
2n+ 1 + s√

2n1/6
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yield the result in the double scaling limit (t ≡ N2/3ω):⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)
∣∣∣∣∣
1−inst.

= N−4/3
[
Ai′(4t)2 − 4tAi(4t)2 +O(N−2/3)

]
= N−4/3

1

32πt
e−

32
3 t

3/2

[
1 +

∞∑
n=1

a(1)
n t−

3
2n

]

with a
(1)
1 = − 17

192
, a

(1)
2 = 1225

73728
, a

(1)
3 = − 199115

42467328
, · · · .

Notes:

• The double scaling limit is expected from the c = −2 topological gravity

with the string susceptibility γ = −1.

(Sphere free energy) ∼ N2ω2−γ = t2−γ

But, it is nontrivial that the nonperturbative contribution obeys this scaling.
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• Instanton effects are suppressed in a simple large-N limit (ω fixed).

But, this is not the case in the double scaling limit!

• The Airy function expression contains all perturbative contributions around

the one-instanton configuration.
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6.3 Two-instanton contribution

The 2nd order approximation (⇔ two-instanton effect):

Pn(x) = P (H)
n (x) + P̃n(x)

and linearize with respect to P̃n(x).

Leading order of two-instanton contribution is computed as⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)
∣∣∣∣∣
2−inst.

= N−4/3
1

(64π)2 t5/2
e−

64
3 t

3/2
[
1 +O(t−3/2)

]
.

• The exponent 64
3
t3/2 is consistent with the picture of two instantons.

1

(64π)2 t5/2
: 1-loop fluctuation

• The one- and two-instanton effects are of the same order O(N−4/3).
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• After wave function renormalization by the factor N4/3, the SUSY breaking

order parameter is nonzero due to instantons.

⇒ SUSY is dynamically broken by the instanton effect.

37



Remarks:

• The free energy F(1,0) has no perturbative contribution, but we find

F(1,0) = F(1,0)

∣∣
1−inst. + F(1,0)

∣∣
2−inst. + · · · ,

where

F(1,0)

∣∣
1−inst. =

1

3

[
32t2 Ai(4t)2 − Ai(4t)Ai′(4t)− 8tAi′(4t)2

]
=

1

128π t3/2
e−

32
3 t

3/2

[
1 +

∞∑
n=1

b(1)n t−
3
2n

]
,

with b
(1)
1 = − 35

192
, b

(1)
2 = 3745

73728
, b

(1)
3 = − 805805

42467328
, · · · .
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F(1,0)

∣∣
2−inst. =

1

2

1

(128π)2 t3
e−

64
3 t

3/2
[
1 +O(t−3/2)

]

F(1,0)

∣∣
2−inst. solely comes from interactions between instantons. Dilute gas

approximation is not used.
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• If matrix-model instantons correspond to D-brane like objects in the type IIA

superstring, condensate of such D-branes seems to generate the

nonperturbative vacuum.

A linear combination of various condensates of the D-branes

F(1,0) = F(1,0)

∣∣
1−inst. + F(1,0)

∣∣
2−inst. + · · · ,

• Asymptotic expansion of Ai(s) for s large has a convergence radius zero,

but it is Borel summable.

⇒ Is F(1,0)

∣∣
1−inst. also?

If so and higher instanton sectors has similar behavior, the nonperturbative

vacuum would be relatively stable compared with usual string vacua (not

Borel summable).
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6.4 Numerical result for full nonperturbative effects

By using Mathematica, we can obtain Pn(−µ2) up to a quite large n from the

recursion relations.

⇒ One-point function
⟨

1
N
tr (ϕ2 − µ2)

⟩(1,0)
is evaluated from N = 1 to

N = 1, 000, 000.

⇒ Extrapolate the results to N =∞. → Figs. 2, 3
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Figure 2:
⟨

1
N
tr (ϕ2 − µ2)

⟩
as a function of t. Everything is normalized by the N = ∞ result (Exact (N = ∞)), and thus the

black solid line representing itself is flat. The gray dashed lines show the results for N = 10p (p = 2, 3, 4, 5). The red line (1-inst.

(leading)) and the blue line (1-inst. (full)) show the behavior of the leading one-instanton contribution and the full one-instanton

contribution, respectively. Finally, the yellow line (1-inst. (full) + 2-inst. (leading)) represents the sum of the full one-instanton result

and the leading two-instanton result. The error associated to the extrapolation to N =∞ is invisible.

42



Figure 3: A magnified view of Fig. 2 around 1.00 in the vertical axis. Finite N results lie outside the plot range.
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Finally we present full nonperturbative contribution to the free energy

F(1,0) = − lnZ(1,0) by numerically integrating the N =∞ result of the

one-point function.

Figure 4: Full nonperturbative contribution to the free energy F(1,0) as a function of t. The black solid line (exact: N = ∞)

represents the result. For comparison, finite N results are shown by the gray dashed lines (exact: N = 10p). Also, the leading and

full one-instanton contributions to F(1,0) are depicted by the red and blue lines, respectively. The yellow line represents the sum of the

full one-instanton result and the leading two-instanton result.
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• The free energy is a finite function of t even at the origin that corresponds

to the strongly coupled limit of the type IIA superstring.

⇒ S-dual theory (noncritical M-theory)?

• From the viewpoint of the perturbation theory, the free energy will be

formally expressed as a double series with respect to t−3/2 and e−
32
3 t

3/2

(so-called trans-series [e.g. Schiappa, Mariño, Dunne, Ünsal,...]):

F(1,0) =
∞∑
k=1

e−
32k
3 t3/2

∞∑
n=k

f (k)
n t−

3
2n.

In matrix models describing bosonic strings, it is extremely nontrivial to sum

up the double series and obtain a well-defined result.

However, in our matrix model for the IIA superstring, Fig. 4 indicates the

well-defined result to be obtained after we manage the summation!

♢ It is interesting to obtain an analytic expression for the full nonperturbative

contribution (by using trans-series and resurgent analysis).
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♢ D-brane computation in the type IIA side.

Thank you very much for your attention!
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A The Penner model [Distler-Vafa 1991]

• Partition function

Z = NP
∫
dN

2
M exp[Nt tr{M + ln(1−M)}]

= NP
∫
dN

2
M exp

[
−Nt tr

∞∑
k=2

1

k
Mk

]
,

where 1
NP

=
∫
dN

2
M exp

[
−Nt tr 1

2
M2

]
.

• Free energy

lnZ =
∞∑
g=0

N2−2gFg,

Fg =
B2g

2g(2g − 2)
t2−2g

(
(1 + t)2−2g − 1

)
for g ≥ 2

⇒ Double scaling limit: N →∞, t→ −1 with N(1 + t) = −ν fixed.
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After putting ν = −iµ, the free energy of c = 1, R = 1 string is

obtained.

Fg =
|B2g|

2g(2g − 2)
µ2−2g (g ≥ 2)

|B2g| = (−1)g−1B2g
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B The Kontsevich-Penner model (W∞ matrix model)

Extension of the Penner model to include source terms for “tachyon” operators

in 2D string (with ν → −ν). [Imbimbo-Mukhi 1995]

• Partition function (solution of theW∞ constraint):

Z(t, t̄) = (detA)ν
∫
dN

2
M exp

[
tr

{
−νMA+ (ν −N) lnM

−ν
∞∑
k=1

t̄kM
k

}]

=

∫
dN

2
M exp

[
tr

{
−νM + (ν −N) lnM − ν

∞∑
k=1

t̄k(MA−1)k

}]
.

• t̄k is a source for “tachyons” of negative momentum −k (∼ trMk).

• A: external N ×N matrix
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Source for positive-momentum “tachyons” tk is given by the

Kontsevich-Miwa transformation of A:

tk =
1

νk
trA−k.

⇒ Asymmetric treatment for positive/negative-momentum “tachyons”

• “Tachyon” amplitude

⟨Tk1 · · · Tkn T−l1 · · · T−lm⟩ =
∂

∂tk1
· · ·

∂

∂tkn

∂

∂t̄l1
· · ·

∂

∂t̄lm
lnZ(t, t̄)

∣∣∣∣
t=t̄=0
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C Observation for the correspondence between MM and 2D superstring

♢ Suppose that ψ and ψ̄ correspond to target-space fermions in the

corresponding superstring theory.

ψ ⇔ (NS,R) sector, ψ̄ ⇔ (R,NS) sector.

Then,

(−1)FL : ψ → ψ, ψ̄ → −ψ̄,
(−1)FR : ψ → −ψ, ψ̄ → ψ̄.

In order for the matrix model action to be invariant under (−1)FL and (−1)FR,
(−1)FL : B → B, ϕ→ −ϕ,
(−1)FR : B → B, ϕ→ −ϕ.

Recall SMM = N tr
[
1
2
B2 + iB(ϕ2 − µ2) + ψ̄{ϕ,ψ}

]
.

This means

B ⇔ (NS,NS) sector, ϕ⇔ (R,R) sector.
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