Recent progress in 2d Causal Dynamical Triangulations

Yuki Sato (KEK → Wits Univ., SA)

September 29th @ KEK Workshop

J. Ambjørn, L. Glaser, Y. S. and Y. Watabiki, Physics Letters B 722, 2013 J. Ambjørn, L. Glaser, A. Görlich and Y.S., Phys. Lett. B 712, 2012

Quantum Gravity

Question: How did the Universe at the very beginning look like?

Its energy was about 10¹⁹ GeV (short scale).

Its dynamics was governed by strong gravity.

Physics at short scale \rightarrow quantum mechanics

Gravitational physics at large scale \rightarrow general relativity

To answer the question, one needs to combine two theories in a consistent manner... → Quantum gravity

However, naïve construction doesn't work because quantum fluctuations cannot be handled.

Non-renormalizabe

Causal Dynamical Triangulations (CDT)

 \rightarrow A non-perturbative way to quantise Einstein gravity

Small scale structure regularized by CDT

Outcome:

1. 4d de Sitter Universe pops up

(J. Ambjørn, Jurkiewicz and R. Loll, 2004)

2. 2nd-order phase transition

(J. Ambjørn, A. Gorlich, S. Jordan, Jurkiewicz and R. Loll, 2010)

(J. Ambjørn, A. Gorlich, S. Jordan, Jurkiewicz and R. Loll, 2010)

2d model is a nice playground because...

- \rightarrow (1) CDT can be solved analytically only in 2 dimensions (so far).
- \rightarrow (2) 2d CDT may be a "good" toy model for 4d CDT.

Recent progress in 2d CDT:

1. 2d CDT and 2d Horava-Lifshitz gravity are in the same universality class. J. Ambjørn, L. Glaser, Y. S. and Y. Watabiki, 2013.

2. A generic method for coupling matters to 2d CDT has been proposed. J. Ambjørn, L. Glaser, A. Görlich and Y.S., 2012. CDT

Horava-Lifshitz

2d CDT J. Ambjørn, R. Loll, 1998

Lorentzian triangle lattice:

$$\underbrace{ \land } \leftarrow \bigotimes \rightarrow \bigotimes$$

lattice spacing \rightarrow fixed

triangulations (T) \rightarrow dynamical

(= how to divide geometry by triangles)

Metric path-integral \rightarrow sum over triangulations (T):

:
$$\int \mathcal{D}g \to \sum_T$$

$$G(l_2, l_1; t) = \sum_{T(l_1, l_2)} e^{iS_L(\alpha)}$$

2d CDT J. Ambjørn, R. Loll, 1998

Discrete action for CDT:

$$S_{L}(\Lambda;g) = -\Lambda \int d^{2}x \sqrt{-g}$$

$$\downarrow \quad \text{discretise}$$

$$S_{L}(\lambda;T) = -\lambda \frac{\sqrt{4\alpha+1}}{4}n(T)$$

$$\downarrow \quad \text{rotation to Euclidian}$$

$$S_{E}(\lambda;T) = \lambda \frac{\sqrt{4\alpha-1}}{4}n(T) \equiv \lambda n(T)$$

Area (
$$\bigtriangleup$$
) = $\frac{\sqrt{4\alpha+1}}{4}\varepsilon^2$
#(\bigtriangleup) = n

Lorentzian
$$\rightarrow$$
 Euclidean
 $\alpha \rightarrow -\alpha$
 $iS_L(\alpha) \rightarrow -S_E(\alpha)$

After the rotation, CDT amplitude becomes

$$G(l_2, l_1; t) = \sum_{T(l_1, l_2)} e^{-\lambda n(T)}$$

 λ : dimensionless cosmological constant

2d CDT J. Ambjørn, R. Loll, 1998

$$G(l_{2}, l_{1}; t) = \sum_{l} G(l_{2}, l; 1) G(l, l_{1}; t - 1)$$

$$Continuum limit$$

$$\lambda \to \lambda_{*} \quad \& \quad \varepsilon \to 0$$

$$\frac{\partial}{\partial T} G(L_{2}, L_{1}; T) = -\hat{H}(L_{1}) G(L_{2}, L_{1}; T)$$

 l_2 t l_1 L_2 T L_1

Quantum Hamiltonian

$$\hat{H}(L_1) = -L_1 \frac{\partial^2}{\partial L_1^2} + \Lambda L_1$$

$$\lambda - \lambda_* \sim \varepsilon^2 \Lambda$$

$$L_1 := \varepsilon l_1 \quad L_2 := \varepsilon l_2, \quad T := \varepsilon t \quad G(L_2, L_1; T) = \lim_{\varepsilon \to 0} \varepsilon^{-1} G(l_2, l_1; t)$$

2D projectable Horava-Lifshitz gravity (HL):

$$S_{
m HL} = \int dt \; dx \; N\gamma \left[(1 - \lambda)K^2 - 2\Lambda
ight]$$

isotropic limit $\lambda \rightarrow 1$ projectable lapse N = N(t)

where
$$\gamma := \sqrt{h}$$
 & $K = \frac{1}{N} \left(\frac{1}{\gamma} \partial_0 \gamma - \frac{1}{\gamma^2} \partial_1 N_1 + \frac{N_1}{\gamma^3} \partial_1 \gamma \right)$

$$\{\gamma(x,t),\pi^{\gamma}(y,t)\} = \delta(x-y)$$

$$H=\int dx \; [N\mathcal{H}+N_1\mathcal{H}^1]$$

"Hamiltonian constr."

$$\mathcal{H} = \gamma \frac{(\pi^{\gamma})^2}{4(1-\lambda)} + 2\Lambda\gamma$$

momentum constr.

Y, $\mathcal{H}^1 = -\frac{\partial_1 \pi^\gamma}{2}$

Solve momentum constraint \rightarrow System reduces to be of 1 dimension

$$H = \int dx \ [N\mathcal{H} + N_1\mathcal{H}^1]$$
Gauge fixing spatial Diff
$$\mathcal{H}^1 = 0 \quad \text{i.e.} \quad \pi^{\gamma}(x,t) = \pi^{\gamma}(t)$$

$$H = N(t) \left(L(t) \frac{(\pi^{\gamma}(t))^2}{4(1-\lambda)} + 2\Lambda L(t) \right), \quad L(t) := \int dx \, \gamma(x,t)$$

Quantise the 1d system based on the following action:

$$S = \int dt \left(rac{\dot{L}^2}{4N(t)L(t)} - \tilde{\Lambda}N(t)L(t)
ight), \qquad \tilde{\Lambda} = rac{\Lambda}{2(1-\lambda)}$$

(from Hamiltonian constr., $\Lambda > 0$ $\lambda < 1$)

Quantum amplitude (after a rotation to Euclidean signature):

$$G(L_2, L_1; T) = \int \frac{\mathcal{D}N(t)}{\text{Diff}[0, 1]} \int \mathcal{D}L(t) \, e^{-S_E[N(t), L(t)]}$$

$$T$$
 L_2 L_1

where

$$S_E = \int dt \left(\frac{\dot{L}^2}{4N(t)L(t)} + \tilde{\Lambda}N(t)L(t) \right) \qquad \qquad \int_0^1 dt N(t) = T_A$$

$$G(L_2, L_1; T) = \langle L_2 | e^{-T\hat{H}} | L_1 \rangle$$

=
$$\int [dL] \langle L_2 | e^{-\varepsilon \hat{H}} | L \rangle G(L, L_1; T - \varepsilon)$$
 integrate

$$\exp\left(-\frac{(L_2-L)^2}{4\varepsilon L_2} - \varepsilon \tilde{\Lambda} L_2\right)$$

completeness:

$$\int [dL_1] |L_1\rangle \langle L_1| = 1$$

Quantum amplitude (after a rotation to Euclidean signature):

$$G(L_2, L_1; T) = \int \frac{\mathcal{D}N(t)}{\text{Diff}[0, 1]} \int \mathcal{D}L(t) \, e^{-S_E[N(t), L(t)]}$$

$$L_2$$

 $T \land L_1$

where

$$S_E = \int dt \left(\frac{\dot{L}^2}{4N(t)L(t)} + \tilde{\Lambda}N(t)L(t) \right) \qquad \qquad \int_0^1 dt \ N(t) = T_E$$

$$G(L_2, L_1; T) = \langle L_2 | e^{-T\hat{H}} | L_1 \rangle$$

$$= \int [dL] \langle L_2 | e^{-\varepsilon \hat{H}} | L \rangle G(L, L_1; T - \varepsilon) \quad \text{integrate}$$

$$= G(L_2, L_1; T - \varepsilon) - \varepsilon \hat{H}(L_2) G(L_2, L_1; T) + \cdots \quad \text{expand}$$

J

completeness:

$$\int [dL_1] |L_1\rangle \langle L_1| = 1$$

Quantum Hamiltonian for HL

$$\hat{H} = -L\frac{\partial^2}{\partial L^2} - 2a\frac{\partial}{\partial L} - \frac{a(a-1)}{L} + \tilde{\Lambda}L \quad \tilde{\Lambda} = \frac{\Lambda}{2(1-\lambda)}$$

What is a ?

Completeness:
$$\int [dL] |L\rangle \langle L| = \int L^a dL |L\rangle \langle L| = 1$$

a = 1
$$\int LdL|L\rangle\langle L| = 1 \quad \leftrightarrow \quad \langle L_2|L_1\rangle = \frac{1}{L_1}\delta(L_1 - L_2)$$

$$a = 0 \int dL |L\rangle \langle L| = 1 \quad \leftrightarrow \quad \langle L_2 |L_1\rangle = \delta(L_1 - L_2)$$

Quantum Hamiltonian for HL

$$\hat{H} = -L\frac{\partial^2}{\partial L^2} - 2a\frac{\partial}{\partial L} - \frac{a(a-1)}{L} + \tilde{\Lambda}L \quad \tilde{\Lambda} = \frac{\Lambda}{2(1-\lambda)}$$

What is a ?

Completeness:
$$\int [dL] |L\rangle \langle L| = \int L^a dL |L\rangle \langle L| = 1$$

a = 1
$$\int LdL|L\rangle\langle L| = 1 \quad \leftrightarrow \quad \langle L_2|L_1\rangle = \frac{1}{L_1}\delta(L_1 - L_2)$$

→ CDT Hamiltonian for an <u>unmarked</u> loop

$$a = 0 \int dL |L\rangle \langle L| = 1 \quad \leftrightarrow \quad \langle L_2 |L_1\rangle = \delta(L_1 - L_2)$$

$$\Rightarrow \text{CDT Hamiltonian for } \underline{a \text{ marked }} \text{loop}$$

Matter-coupled CDT

Trivial classical dynamics:

$$\int d^2x \sqrt{g}R = 4\pi\chi \qquad \chi \quad \text{:Euler number}$$

$$\chi = 2 \qquad \chi = 0 \qquad \chi = -2 \qquad \chi =$$

Gauss-Bonnet's theorem, 1848

Non-trivial quantum dynamics:

$$Z = \int [\mathcal{D}g] \exp\left[-\int d^2x \sqrt{g} \left(\frac{\kappa}{4\pi}R + \Lambda\right)\right]$$
$$= \sum_{\chi} \underbrace{\left(e^{-\kappa}\right)}_{N} \chi \int [\mathcal{D}g(\chi)] \underbrace{\left(e^{-\Lambda}\right)}_{\lambda} \int d^2x \sqrt{g(\chi)}$$
$$= \sum_{\chi} N^{\chi} \int [\mathcal{D}g(\chi)] \lambda^{A(g)}$$

Dynamical Triangulation (DT)

Coupling to matters (Matrix Model)

Path-integral in DT = Sum over all triangulated geometries

Path-integral in CDT = Sum over all triangulated geometries w/ causality

Define the matrix integral (Φ : N X N Hermitian matrix):

Vacuum diagram:

Triangulated surface:

 $(N\lambda)^{\#(\text{vertex})} \left(\frac{1}{N}\right)^{\#(\text{prop})} N^{\#(\text{loop})}$ dual $(N\lambda)^F \left(\frac{1}{N}\right)^E N^V = \lambda^F N^{\chi}$

Matter-coupled CDT can be obtained at least in a continuum limit:

Define the matrix integral (Φ , M: N X N Hermitian matrices):

Define the matrix integral (Φ , M: N X N Hermitian matrices):

Define the matrix integral (Φ , M: N X N Hermitian matrices):

After the Gaussian integration over M, we find

$$\int d\phi e^{-\frac{N}{g_s} \text{tr} V(\phi)} \quad \text{where} \quad V(\phi) = \frac{1}{2} \phi^2 - \lambda \phi - \frac{\lambda}{3} \phi^3 - \frac{1}{2} \lambda^3 \zeta \phi^4$$

In the large-N limit, the so-called loop equation is obtained:

$$g_s w(z)^2 - V'(z)w(z) + P_2(z) = 0$$

where
$$w(z) \equiv \frac{1}{N} \operatorname{tr} \left\langle \frac{1}{z - \phi} \right\rangle = \frac{1}{N} \sum_{i=1}^N \left\langle \frac{1}{z - \tau_i} \right\rangle$$

One-cut solution:

$$w(z) = \frac{1}{2g_s} \left(V'(z) - \sum_{k=1}^3 M_k (z-a)^{k-1} \sqrt{(z-a)(z-b)} \right)$$

One-cut solution:

$$w(z) = \frac{1}{2g_s} \left(V'(z) - \sum_{k=1}^3 M_k (z-a)^{k-1} \sqrt{(z-a)(z-b)} \right)$$

Since w(z) = 1/z + O(1) in |z| >> a-b,

$$w(z) = \sum_{k=0}^{\infty} C_{3-k} z^{3-k} \qquad \qquad w(z) \equiv \frac{1}{N} \operatorname{tr} \left\langle \frac{1}{z-\phi} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \left\langle \frac{1}{z-\tau_i} \right\rangle$$

where

 $C_3 = C_2 = C_1 = C_0 = 0, \quad C_{-1} = 1.$ 5 equations

5 unknowns, $\{a, b, M_1, M_2, M_3\}$ can be determined by 3 couplings, $\{g_s, \lambda,$

$$(\lambda, \zeta, g_s)$$

Horava-Lifshitz w/c=-22/5

[new, 2012]

Where to go

2d CDT has been understood quite well:

[1] A corresponding field theory is the projectable Horava-Lifshitz gravity.

 \rightarrow 2d black hole in CDT K. Hirochi, T. Katsuragawa, H. Suenobu and Y.S.

 \rightarrow non-projectable HL = Generalised CDT?

[2] Matters can be coupled using matrix model techniques.

 \rightarrow CDT coupled to Ising model

What is an implication from 2d toy model to 4d world?

 \rightarrow 4d CDT = 4d (projectable) Horava-Lifshitz?

It seems not... (CDT w/o foliation, S. Jordan and R. Loll, 2013.)

Where to go

At least in 3 dimensions, CDT and CDT w/o foliation are in the same universality class.

S. Jordan and R. Loll, arXiv: 1307.5469.

Status of 2d CDT:

GOOD: Exactly solvable (w/ or w/o matters)

BAD: May not be a good toy model for 4d CDT

Future directions:

[1] Construct an analytic method for 2d CDT w/o foliation.

T. Tanaka and Y.S. → Generalisation of Matrix Model

[2] Construct an analytic method for higher-dimensional CDT.

N. Sasakura and Y.S. → Tensor Models!!

Summary (2)

	$W(Z_{ m cdt})$	σ	d_H
Horava-Lifshitz (plain CDT)	$W(Z_{\rm cdt}) = \frac{1}{Z_{\rm cdt} + \sqrt{2\Lambda_{\rm cdt}}}$	-	2
Horava-Lifshitz coupled to non-unitary CFT (CDT coupled to dimers)	$W(Z_{\rm cdt}) = \frac{1}{Z_{\rm cdt} + \Lambda_{\rm cdt}^{1/3}}$	1/2	3/2

Magnetization:

$$\frac{d\log\lambda_*}{d\zeta} \sim \left(\zeta - \zeta_*\right)^{\sigma}$$

Hausdorff dimension:

$$d_H = \frac{m}{m-1}$$

m=2 (**plain**), m=3 (**dimer**)

Outlook for 4D CDT – a wild guess

CDT without foliation S. Jordan and R. Loll, 2013.

Four kinds of possible triangles with space-like and/or time-like edges:

Global causality vs. Local causality:

CDT (global causality)

CDT w/o foliation (local causality)

Space-like edge:

Time-like edge:

$$\ell_t^2 \!=\! -\alpha \ell_s^2$$

Light ray:

CDT without foliation S. Jordan and R. Loll, 2013.

At least in 3 dimensions,

CDT and CDT w/o foliation are in the same universality class.

S. Jordan and R. Loll, arXiv: 1307.5469.

2d model may not be a good toy model for 4d CDT.

Short Summary

2d CDT turns out to be the 2d projectable Horava-Lifshitz quantum gravity:

Causal Dynamical Triangulations vs. Horava-Lifshitz gravity

VS.

Solve

$$C_3 = C_2 = C_1 = C_0 = 0, \quad C_{-1} = 1$$
 & $M_1 = M_2 = 0$ around small gs

 $g_s = G_s \epsilon^4$

Then we find

$$egin{aligned} \lambda &= \lambda_* + ilde{\Lambda}\epsilon^2 - \Lambda\epsilon^3, & \zeta &= \zeta_* - rac{1}{2} ilde{\Lambda}\epsilon^2, \ a &= a_* - A\epsilon, & b &= a_* - B\epsilon, & z &= a_* + \epsilon Z_2 \end{aligned}$$

Continuum wave func. of the Universe:

$$w(z) = \frac{1}{2g_s} \left(V'(z) - \sum_{k=1}^{3} M_k (z-a)^{k-1} \sqrt{(z-a)(z-b)} \right)$$

$$\downarrow \quad \text{Continuum limit}$$

$$w(z) = \frac{1}{\epsilon} W(Z) + \cdots$$

$$\downarrow \quad \tilde{\Lambda}_{cdt} = 0 \quad \text{CDT background}$$

$$G_s \rightarrow 0 \quad \text{Classical limit}$$

$$\textbf{Matter-coupled CDT} \qquad \textbf{Plain CDT}$$

$$W(Z_{cdt}) = \frac{1}{Z_{cdt} + \Lambda_{cdt}^{1/3}}$$

$$W(Z_{cdt}) = \frac{1}{Z_{cdt} + \Lambda_{cdt}^{1/3}}$$

$$W(Z_{cdt}) = \frac{1}{Z_{cdt} + \sqrt{2\Lambda_{cdt}}}$$

$$W(Z_{cdt}) = \frac{1}{Z_{cdt} + \sqrt{2\Lambda_{cdt}}}$$

$$W(Z_{cdt}) = \frac{1}{Z_{cdt} + \sqrt{2\Lambda_{cdt}}}$$

Q1. Is the diffeomorphism broken in a lattice approach?

No. Because a lattice gravity is quantum gravity without coordinates.

Q2. Is CDT a background-independent formulation?

It seems No. Because there is a global time direction.

Q3. So, then what's the status of CDT?

Probably, an effective theory arising from integrating out baby universes.

o. INTRODUCTION

What is the IR (field-theoretical) description of CDT?

CDT looks like Horava-Lifshitz gravity (HL)...

CDT: Lattice quantum gravity w/ causality (foliation)

HL: Quantum gravity w/ anisotropic scaling (foliation) -

In our work, we have determined that

2D CDT is 2D projectable HL quantum gravity!!

common

Causal Dynamical Triangulations (CDT):

causality

o. INTRODUCTION

What is the IR description of CDT?

CDT looks like Horava-Lifshitz gravity (**HL**)...

CDT: Lattice quantum gravity w/ causality (foliation)

HL: Quantum gravity w/ anisotropic scaling (foliation) -

In our work, we have determined that

2D CDT is 2D projectable HL quantum gravity!!

common

ADM decomposition:

4D Einstein (covariant) gravity:

$$S_{\rm ADM} = \frac{1}{\kappa} \int dt d^3x \ \sqrt{h} N(K_{ij}K^{ij} - K^2 + R - 2\Lambda)$$

4D Einstein (covariant) gravity:

$$S_{\rm ADM} = \frac{1}{\kappa} \int dt d^3x \ \sqrt{h} N (K_{ij} K^{ij} - K^2 + R - 2\Lambda)$$

[Newton's constant]
$$[\kappa] = -2$$

[symmetry] →

4D HL (anisotropic) gravity: $S_{\text{HL}} = \frac{1}{\kappa} \int dt d^3x \sqrt{h} N(K_{ij}K^{ij} - \lambda K^2 - \mathcal{V}[h_{ij}])$ [symmetry] \longrightarrow fixed [Newton's constant] $[\kappa] = z - 3$ renormalizable $x^i \rightarrow bx^i$

changeable

4D HL:

$$S_{\rm HL} = \frac{1}{\kappa} \int dt d^3x \,\sqrt{h} N(K_{ij}K^{ij} - \lambda K^2 - \mathcal{V}[h_{ij}])$$

2D HL:

$$S_{\rm HL} = \int dt dx \sqrt{h} N[(1-\lambda)K^2 - 2\Lambda] \qquad K_{11}K^{11} = K^2$$

No higher derivative terms

1. 2D CDT

Triangle lattice (UV cutoff):

lattice spacing $(\varepsilon) \rightarrow fixed$ triangulations (T) \rightarrow dynamical (= how to divide geometry by triangles)

Metric path-integral \rightarrow sum over triangulations (T): $\int \mathcal{D}g \rightarrow \sum_{T}$

$$G(l_2, l_1; t) = \sum_{T(l_1, l_2)} e^{-\lambda n(T)}$$
$$= \sum_{n} e^{-\lambda n} w_{n, l_1, l_2}$$

 λ : cosmological constant #(Δ) = \mathcal{N} #(T) = $\mathcal{W}_{l_1, l_2, n}$

Quantum Hamiltonian for HL

$$\hat{H} = -L\frac{\partial^2}{\partial L^2} - 2a\frac{\partial}{\partial L} - \frac{a(a-1)}{L} + \tilde{\Lambda}L \qquad \tilde{\Lambda} = \frac{\Lambda}{2(1-\lambda)}$$

$$a = 0 \iff \underline{dL} \iff \hat{H} = -L \frac{\partial^2}{\partial L^2} + \tilde{\Lambda}L$$

→ CDT Hamiltonian for <u>a marked</u> loop

$$a = 1 \iff \underline{LdL} \iff \hat{H} = -L\frac{\partial^2}{\partial L^2} - 2\frac{\partial}{\partial L} + \tilde{\Lambda}L$$

→ CDT Hamiltonian for an <u>unmarked</u> loop

3. SUMMARY

2D CDT turns out to be the 2D projectable Horava-Lifshitz quantum gravity:

$$S_{\rm HL} = \int dt \, dx \, N\gamma \left[(1-\lambda)K^2 - 2\Lambda \right] \qquad \text{where} \qquad \begin{array}{l} N = N(t) \\ \Lambda > 0 \quad \lambda < 1 \end{array}$$

3. SUMMARY & CONJECTURE

2D CDT turns out to be the 2D projectable Horava-Lifshitz quantum gravity:

$$S_{\rm HL} = \int dt \, dx \, N\gamma \left[(1-\lambda)K^2 - 2\Lambda \right] \qquad \text{where} \qquad \begin{array}{l} N = N(t) \\ \Lambda > 0 \quad \lambda < 1 \end{array}$$

3. SUMMARY

baby universes

2D CDT turns out to be the 2D projectable Horava-Lifshitz quantum gravity:

$$S_{HL} = \int dt \ dx \ N\gamma \left[(1 - \lambda)K^2 - 2\Lambda \right]$$
 where
$$N = N(t)$$

$$\Lambda > 0 \quad \lambda < 1$$

$$Future works:$$
(1) Non-projectable HL
= Generalised CDT?
(2) BH in 2D CDT?
(3) What about 4D?

No baby universe

L

Solve

$$C_3 = C_2 = C_1 = C_0 = 0, \quad C_{-1} = 1 \quad \& \quad M_1 = M_2 = 0$$
 around small gs

 $g_s = G_s \epsilon^4$

Then we find

$$egin{aligned} \lambda &= \lambda_* + ilde{\Lambda}\epsilon^2 - \Lambda\epsilon^3, & \zeta &= \zeta_* - rac{1}{2} ilde{\Lambda}\epsilon^2, \ a &= a_* - A\epsilon, & b &= a_* - B\epsilon, & z &= a_* + \epsilon Z_2 \end{aligned}$$

Continuum wave func. of the Universe:

$$w(z) = \frac{1}{2g_s} \left(V'(z) - \sum_{k=1}^3 M_k(z-a)^{k-1} \sqrt{(z-a)(z-b)} \right) \longrightarrow w(z) = \frac{1}{\epsilon} W(Z) + \cdots$$

where

$$W(Z_{\rm cdt}) = \frac{\left(\Lambda_{\rm cdt} + 2\sqrt{3}\tilde{\Lambda}_{\rm cdt} + \frac{1}{9}Z_{\rm cdt}^3\right) - P_2(Z_{\rm cdt})\sqrt{(Z_{\rm cdt} + A_{\rm cdt})(Z_{\rm cdt} + B_{\rm cdt})}}{2G_s}$$

$$\int \tilde{\Lambda}_{\rm cdt} = 0 \quad \text{CDT background}$$

$$G_s \to 0 \quad \text{Classical limit} \qquad \text{Pure case}$$

$$W(Z_{\rm cdt}) = \frac{1}{Z_{\rm cdt} + \Lambda_{\rm cdt}^{1/3}}$$

$$W(Z_{\rm cdt}) = \frac{1}{Z_{\rm cdt} + \Lambda_{\rm cdt}^{1/3}}$$

$$W(Z_{\rm cdt}) = \frac{1}{Z_{\rm cdt} + \sqrt{2}\Lambda_{\rm cdt}}$$

Wilsonian renormalization

If and only if a cutoff theory is fundamental, it should possess

(1) Infinite UV cutoff limit characterized via a fixed point in RG flow:

(A) Gaussian fixed point (GF)

(B) Non-Gaussian fixed point (NGF)

- \rightarrow canonical scaling dim.
- \rightarrow non-canonical scaling dim.

(2) Predictability

Finite number of couplings

→ Predictable!!

Infinite number of couplings

 \rightarrow Non predictable

Summary (1)

2d CDT turns out to be the 2d projectable Horava-Lifshitz quantum gravity:

$$S_{\rm HL} = \int dt \ dx \ N\gamma \left[(1 - \lambda)K^2 - 2\Lambda \right] \qquad \text{where} \qquad \begin{array}{c} N = N(t) \\ \Lambda > 0 \quad \lambda < 1 \end{array}$$

$$\begin{array}{c} \text{DT} \qquad \text{Integrate out} \qquad \text{CDT} \\ \text{baby universes}^{*} \qquad & & & \\ \hline \end{array} \qquad & & & \\ \text{baby universes}^{*} \qquad & & & \\ \hline \end{array} \qquad & & & \\ \text{continuum} \qquad & & \\ Projectable \\ \text{Horava-Lifshitz gravity} \qquad & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & & \\ \hline \end{array} \qquad & & \\ \hline \end{array} \qquad & & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & & \\ \hline \end{array} \qquad & & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Generalised CDT} \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \hline \end{array} \qquad & \\ \begin{array}{c} \text{Seneralised CDT} \\ \end{array}$$

(*) J. Ambjørn, J. Correia, C. Kristjansen and R. Loll, 1999

Continuum limit:

$$\bigwedge_{\epsilon} \longrightarrow \bigwedge_{\epsilon} \implies k (= F) = infinity$$

under the fixed volume V.

This can be realized by fine-tuning the coupling constants to critical values.

Physical volume:

$$V = \epsilon^{2}(\lambda)k(\lambda) = \epsilon^{2}(\lambda_{*})k(\lambda_{*})$$

critical value