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Microscopic View
All the microstates that have energy E

There are huge number
of states

Principle of Equal Weight:
When all the microstates emerge in the same probability,
the average value give the equilibrium value.

oW can we |ustify this principle?



Explanation using the Ergordic Hypothesis

All the microstates that have energy E

Ergordic theory gives the fruitful mathematics
Buf...

It takes too much time (physically nonsense)

It gets harder as the system size increases



Explanation using the Typicality

(L))
L] v
(AIGHEER #iaT HFD)

Almost all the microstate at energy E are
macroscopically indistinguishable!




Explanation of
the approach 1o equilibrium

(L))
L] po
(AIGHEER #iaT HFD)




Previous Works

Total System Sub System
Ensemble Mixed Mixed
. 1 ~
Formulation W E) > n)(n] exp(—BH)/Z
Srey Pure Mixed
revious _
P) = Zn Cn|1) “Canonical Typicality”

Works <¢‘Mz‘w> _ <Mz>(}3:E‘I1,S}V = exp(—ﬁH)/Z

+ (exponentially small error)

A.Sugita (2007), S.Popescu et al. (2006)
P.Rieman (2008) S.Goldstein et al. (2006)




S.Popescu et al. (2006),
S.Goldstein et al. (2006)

Take a random vector |Vg) = ) . ¢;i|Ep)
l.e. the random vector in the specified energy shell

{|E,)},,: an arbitrary orthonormal basis spanning
the enegy shell |[E, E + AF)

{c;}; :asetof random complex numbers
- with >_; el =1 y
When we see the subsystem of |Vg),
the expectation value Is very close to
the canonical ensemble average 7 VE)

[ l
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Subsystem Trace out



S.Popescu et al. (2006),
S.Goldstein et al. (2006)

When we see the subsystem of |¢Yg),
the expectation value Is very close to
the canonical ensemble average 4WE>

Subsystem Trace out

[hat IS, the deviation ratio satisfies
> e) < “_ Hl
i i d

A

P (‘(¢E|A\¢E> — (43N

[21 : mechanical variable on the subsystem)

— Conditon for A can be weaken



A Sugita (2007),
P.Rieman (2008)

When we see the observables which are

low-degree polynomials of local operators,

the expectation value Is very close to

the microcanonical ensemble average. )
-

That Is,
P (|(wsldlys) — (A)gsy

[}i : mechanical variable on the subsystem)

> e) < 4]
_ _ d

(Conditon for A can be weaken even more)



Previous Works

Total System Sub System
Ensemble Mixed Mixed
. 1 ~
Formulation W E) > n)(n] exp(—BH)/Z
| Pure Mixed
Previous |¢> _ Z Cn\’”)
Works “Canonical Typicality”

(WM, [) = (M) TN
+ (exponentially small error)

A.Sugita (2007),
P.Rieman (2008)

S=7T="

~ exp(—BH)/Z

S.Popescu et al. (2006)
S.Goldstein et al. (2006)

Y) =7



Purpose of Our Work

Establish the formulation of statistical
mechanics using a single pure guantum state.




Macroscopic Variables

Mechanical Variables
- Low—degree polynomials of local operators
(i.e. their degree < m = o(N))
Ex) Magnetization, Spin-spin correlation function

Genuine Thermodynamic Variables
Ex) Temperature T, Entropy S
- Cannot be represented as mechanical variables
- All genuine thermodynamic variables can be derived
from entropy S.



Thermal Pure Quantum (TPQ) State

When \If> Is generated from some probability measure,
we call |U)a TPQ state if

i U|A|T) P, 2\ ens
(AN = <<\£|\|11>> » (AN

uniformly for every mechanical variable A as N — oc

[(14)}3\1}18 ensemble average of A J

£> : convergence In probability

Independent variables

u, N : <A> N 4 <A>ff,,nN Microcanonical TPQ state
L energy density F//N

B, N : (A)E,N SN (A)%HJSV Canonical TPQ state



New Formulation

Total System Sub System
Ensemble Mixed Mixed
Previous Works Pure “CMixefi I
|¢> — Zn Cn‘n> an.onlc.:a y
Typicality
S="T="

Y) =7



New Formulation

Total System Sub System
Ensemble Mixed Mixed
Previous Works Pure “CMixefi I
‘w> — Zn Cn‘n> an.onlc.:a y
Typicality
S="T="

V) =7




New Formulation

Total System Sub System
Ensemble Mixed Mixed
Previous Works Pure ) Mixefj
U) = Y, caln) | “Canonical
ypicality
Microcanonical Pure _
kY = (I — h)k :
TPQ state k) = ( )" |1o) Mixed
S =7 T ="
. B,N) ,\
Canonical = e—Nﬁh/Q\w

TPQ state




New Formulation

Total System Sub System
Ensemble Mixed Mixed
Previous Works Pure ) Mixefj
U) = X, ealm) | "Canorieal
ypicality
Microcanonical Pure
kY = (1 — h)F -
TPQ state k) = ( )" |1o) Mixed
S =" T ="
. B, N) ,\
Canonical = e—Nﬁh/Q\w
TPQ state F =7




New Formulation

Total System Sub System
Ensemble Mixed Mixed
Previous Works Pure ) Mixed
U) = X, ealm) | "Canorieal
ypicality
Microcanonical Pure _
kY = (1 — h)k :
TPQ state k) = ( )" |1o) Mixed
(k|k) <> S
. B,N) A
Canonical = e—Nﬁh/Q\w
TPQ state

B, N|,N) < F
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Setup

System:
- Discrete quantum system composed of N sites,

- The dimension of the Hilbert space is D.

- The ensemble formulation gives correct results,
which are consistent with thermodynamics in N — oo

- Assume every mechanical variable A is normalized

as ||AII<KKN™  (To exclude foolish operators (gx.NNPAI)
K : Constant independent of A and }V.

A

- We use quantities per site, 1, = E/N and /, = }A]/N

. The spectrum of A is €min < U < €max



Canonical TPQ State PRL 111, 010401
(2013)

Firstly, take a random vector |[ig) = > ¢;|i)
from the whole Hilbert space.

4 {W}z . an arbitrary orthonormal basis of h
the whole Hilbert space

+ -asetof random complex numbers
G with S, (a2 = D. Y

Notice:
This random vector |¢o) is independent of the
choice of the basis set {|i)};.

— Preparation of |¥o) is easy.



Canonical TPQ State PRL 111, 010401
(2013)

Firstly, take a random vector |[ig) = > ¢;|i)
from the whole Hilbert space.

4 {\z>}7, . an arbitrary orthonormal basis of A
the whole Hilbert space

+ -asetof random complex numbers
G with S, (a2 = D. Y

Then, calculate
B, N) = exp[-NBh/2)lp)  (h=H/N)

8, N) is the canonical TPQ state
at temperature 1/




Canonical TPQ State PRL 111, 010401
(2013)

Mechanical Variables

WTPQ _ (B,N|A|B,N) P/ i\en
A s N =By 7 (AEN

(18, N) = exp[—NBh/2]1) )

Genuine Thermodynamic Variables
Free energy

[AN : Dimension of total Hilbert space]



Error Probabillisty of Canonical TPQ State
(B, N|B,N) = Z(B,N)

S - Random average over {Ci}i
2(5, N) = Trlexp(—N 3h)
\_ A" : Dimension of total Hilbert space _/

\

(‘(B N|3,N)/{8,N|B,N) — 1‘ > 6)
< 1

€ eXp[QNB{f(l/QB N)—=f(1/B;N)}]
< 612 exp[@l)(N)] [f(ﬁ, N): free energy density ]




Error Probability of Canonical TPQ State

(A)3'\ = (B,N|A|B,N)/{B,N|B,N)
= (A)s,

[_ : Random average over{Ci}i]




Error Probability of Canonical TPQ State
(A)55* = (B, N|A|B,N) /(3,N|B, N)

= (A%
P ({3 — (g | > )

~ 1 (A (AT N (A FR)’
— € exp[2NB{f(1/28;N)—f(1/5; N)}]

612 exé\[f@}nN)] [<(AA) )3 N Variance of A]

VAN

A single realization of a TPQ state gives the
equilibrium values of all mechanical variables.




S=1/2 kagome-lattice Heisenberg
antiferromagnet

Second peak vanishesas as N — oo ?



Error Probabllity of
Canonical TPQ State

-9

1 ((A)H S N H{A)SE N —(A) )7

(A) g — (DTN

P

<3 exp[2NB{f(1/28;N)—f(1/B;N)}]

Almost self-validating!




S=1/2 kagome—lattice Heisenberg
antiferromagnet




Error Probabllity of
Canonical TPQ State

-9

1 ((A)H S N H{A)SE N —(A) )7

(A) g — (DTN

P

<3 exp[2NB{f(1/28;N)—f(1/B;N)}]



Error Probabllity of
Canonical TPQ State

P ([(A)50° — ()| = o)
(L (AA Ay ()
= €2 exp[2NB{f(1/28;N)—f(1/B;N)}

1 (AA)2)57
<2 SHINBUON) - (BN

[<<AA>2>%??V = ( (A= (Dg3)? 5%

\.




Error Probabllity of
Canonical TPQ State

P (|55 — ()| = o)
(L (A (A (A
= €2 "exp2NB{f(1/28;N)—f(1/B;N)}] |

1 (AA))5%
= 2 SHNBUON) - (/BN

[<<AA>2>%??V = ( (A= (DF2)? 3% ]

.




S=1/2 kagome—lattice Heisenberg
antiferromagnet




Free energy density

Temperature T

0.0 .
0.5 1.0

—-0.2

_04 / Af=0.02]

Free energy I

density [
f ~0.8

-1.0
-1.2

~1.4




Error Probabllity of
Canonical TPQ State

2

(L (A (A (A

= €? exp[2NB{f(1/28;N)—f(1/B;N)}] |

<L <(AA)2>en§;V

— €2 |exp|NB{f(O;N)—f(1/8;N)}]
=1800 [ Af=0.02 O

=104

(A) 537 — (A,

P (

.




S=1/2 kagome-lattice Heisenberg
antiferromagnet

Error is less than 1% down to T=0.1J!



Error Probability of Canonical TPQ State

P ({3 — (g | > )
1 ((AAP) S N +{A)SE N —
€2 exp[2NB{f(1/26;N)—

< 1 N2m
— €2 exp[O(N)\

Even when we replace A by the dynamical quantities

e.s. Ae—tHtEH |, the error is still exponentially small,
because |[Ae = ! B|| = || A| [[e=*!|| B|| < O(N*m)
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Microcanonical TPQ State FRL 10802?20041%1)

Start from the same state |%0) = ZZ sz which is
the random vector in the whole Hilbert space

Then, calculate

ky=(—h)kPbo)  (h=H/N A

U = <k\mk>/<k‘k> [ : arbitrary constant
for k=1,2,...

k) is the microcanonical TPQ state
at energy ug




Microcanonical TPQ State PRL 108.240401
(2012)
k)= (1—h)*lvo)  (Ch=H/N A

U = (k\fz\k)/(k\k) [ : arbitrary constant
\_ of O(l) s.t. [ > Emax

for k=1,2,...

Energy _—Density of states
distribution A
of |k)

Uk €max [ Energy u



Microcanonical TPQ State FRL 10802?20041%1)

Mechanical Variables

(k|Alk) P Tr[Apmc]
(klky " Trlpmc]
[pmc = (l — ;L)Qk]

Genuine Thermodynamic Variables

Entropy

s(ug; N) = + In(k|k) — 22 In(l — ug) + O(N)
f‘k) = (I — iz)khbo): Unnormalized microcanonical h
L TPQ state at energy ;. ,



Analytic Relations

Canonical and microcanonical TPQ states are related
by simple analytic transformations.

exp[—NBh/2)|t) = e~ N2 Y00 INELL |y
= e NP2 N Rilibr).
[Ivow) = (1/\/<k\k>) k), Ry = (NB/2)F\/(kE)/k! )
\ 8, )
O( (M

1
N \
Energy N &)
distribution i

/ - — >
Other |k)Ys Energy density




Advantages for Numerical Method

exp(—BH)/Z — |8, N) = exp[-NSh/2][¢)
Many Advantages

- Free from dimension and structure of Hamiltonian.

Free From Negative Sign Problem
Applicable to Higher Dimensional Systems

 Finite temperature.

- Less amount of calculation than a diagonalization

of Hamiltonian.

- Only 2 vectors (l.e. Computer Memory) are needed
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Different Representations of
the Same Equilibrium State

Conventional Formulation

Znéenergy shell ‘n> <TL‘, eXp(_/BH)

TPQ States Formulation

k), 18, N)

AS far as we see macroscopic quantities,
we cannot distinguish them.



energy high S — —

e Minimum value

. Average value of

® random vector in whole Hilbert space .
| ( A.Sugita & A.Shimizu (2005) )
- — TPQ states -

TPQ states are almost maximally entangled




Different Representations of

the Same Equilibrium State

Conventional Formulation

Znéenergy shell ‘7’2,> <7’L

—> At high temperature, they

PQ States Formulation

k), 18, N)

, exp(—ﬁﬁ)

nave little entanglement.

—> TPQ states have almost maximum entanglement.

Microscopically completely different states
represent the same equilibrium state.




Thank Youl



