熱的な量子純粋状態を用いた 統計力学の定式化

Dept. of Basic Science, Univ. Tokyo Sho Sugiura (杉浦祥), Akira Shimizu (清水明)

SS and A.Shimizu, PRL 108, 240401 (2012) SS and A.Shimizu, PRL 111, 010401 (2013)

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Microcanonical TPQ State and Its Relation to Canonical TPQ State
- 4. Entanglement

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Microcanonical TPQ State and Its Relation to Canonical TPQ State
- 4. Entanglement

Principle of Equal Weight

Boltzmann formula

Principle of Equal Weight:

When all the microstates emerge in the same probability, the average value give the equilibrium value.

How can we justify this principle?

Explanation using the **Ergordic Hypothesis**

All the microstates that have energy E

Ergordic theory gives the fruitful mathematics But...

It takes too much time (physically nonsense) It gets harder as the system size increases

Explanation using the Typicality

Explanation of the **approach** to equilibrium

Previous Works

	Total System	Sub System
Ensemble	Mixed	Mixed
Formulation	$rac{1}{W(E)}\sum n angle\langle n $	$\exp(-\beta \hat{H})/Z$
Previous Works	Pure $ \psi\rangle = \sum_{n} c_{n} n\rangle$ $\langle \psi \hat{M}_{z} \psi \rangle = \langle \hat{M}_{z} \rangle_{E,N}^{\text{ens}}$ + (exponentially small error) A.Sugita (2007), P.Rieman (2008)	Mixed "Canonical Typicality" $\simeq \exp(-\beta \hat{H})/Z$ S.Popescu et al. (2006) S.Goldstein et al. (2006)

S.Popescu et al. (2006), S.Goldstein et al. (2006)

 $|\psi_E\rangle$

Take a random vector $|\psi_E angle\equiv\sum_i c_i|E_n angle$

i.e. the random vector in the specified energy shell

 $\{|E_n\rangle\}_n$: an arbitrary orthonormal basis spanning the enegy shell $[E, E + \Delta E)$

 $\{c_i\}_i$: a set of random complex numbers with $\sum_i |c_i|^2 = 1$.

When we see the subsystem of $|\psi_E\rangle$, the expectation value is very close to the canonical ensemble average

S.Popescu et al. (2006), S.Goldstein et al. (2006)

 $|\psi_E
angle$

When we see the subsystem of $|\psi_E\rangle$, the expectation value is very close to the canonical ensemble average

A.Sugita (2007), P.Rieman (2008)

 $|\psi_E\rangle$

When we see the observables which are low-degree polynomials of local operators, the expectation value is very close to the microcanonical ensemble average.

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$$

That is,

$$\mathbf{P}\left(\left|\langle\psi_E|\hat{A}|\psi_E\rangle - \langle\hat{A}\rangle_{E,N}^{\mathrm{ens}}\right| \ge \epsilon\right) \le \frac{\|\hat{A}\|}{d}$$

 \hat{A} : mechanical variable on the subsystem $\int_{A}^{A} \hat{A}$ (Conditon for \hat{A} can be weaken even more)

Previous Works

	Total System	Sub System
Ensemble	Mixed	Mixed
Formulation	$rac{1}{W(E)}\sum n angle\langle n $	$\exp(-\beta \hat{H})/Z$
Previous	$Pure_{ a/y} = \sum_{a \in [m]} Pure_{ a/y}$	Mixed
Works	$\begin{split} \psi\rangle &= \sum_{n} c_{n} n\rangle \\ \langle \psi \hat{M}_{z} \psi \rangle &= \langle \hat{M}_{z} \rangle_{E,N}^{\mathrm{ens}} \\ &+ (\text{exponentially small error}) \end{split}$	"Canonical Typicality" $\simeq \exp(-\beta \hat{H})/Z$
	A.Sugita (2007), P.Rieman (2008)	S.Popescu et al. (2006) S.Goldstein et al. (2006)
	S = ? T = ?	$ \psi angle=?$

Purpose of Our Work

Establish the formulation of statistical mechanics using a **single** pure quantum state.

Macroscopic Variables

Mechanical Variables

- Low-degree polynomials of local operators (i.e. their degree $\leq m = o(N)$)

Ex) Magnetization, Spin-spin correlation function

- Genuine Thermodynamic Variables Ex) Temperature T , Entropy S
 - Cannot be represented as mechanical variables
 - All genuine thermodynamic variables can be derived from entropy $S. \label{eq:stables}$

Thermal Pure Quantum (TPQ) State

When $|\Psi
angle$ is generated from some probability measure, we call $|\Psi
angle$ a TPQ state if

$$\langle \hat{A} \rangle_N^{\Psi} \equiv \frac{\langle \Psi | \hat{A} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \xrightarrow{P} \langle \hat{A} \rangle_N^{\text{ens}}$$

uniformly for every mechanical variable A as $N
ightarrow \infty$

$$\begin{pmatrix} \langle \hat{A} \rangle_N^{\text{ens}} : \text{ensemble average of } \hat{A} \\ \stackrel{P}{\rightarrow} : \text{convergence in probabilition}$$

: convergence in probability

Independent variables $u, N : \langle \hat{A} \rangle_{u,N}^{\Psi} \xrightarrow{P} \langle \hat{A} \rangle_{u,N}^{\text{ens}}$ \frown energy density E/N $\beta, N: \langle \hat{A} \rangle_{\beta,N}^{\Psi} \xrightarrow{P} \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}}$

Microcanonical TPQ state

Canonical TPQ state

Total System	Sub System
Mixed	Mixed
Pure $ \psi angle = \sum_n c_n n angle$	Mixed "Canonical Typicality"
S = ? T = ?	
	$ \psi\rangle =?$
	Total SystemMixedPure $ \psi\rangle = \sum_{n} c_{n} n\rangle$ $S = ? T = ?$

	Total System	Sub System
Ensemble	Mixed	Mixed
Previous Works	Pure $ \psi angle = \sum_n c_n n angle$	Mixed "Canonical Typicality"
	S = ? T = ?	$ \psi angle=?$

	Total System	Sub System
Ensemble	Mixed	Mixed
Previous Works	Pure $ \psi\rangle = \sum_n c_n n\rangle$	Mixed "Canonical Typicality"
Microcanonical TPQ state	Pure $ k\rangle = (l - \hat{h})^k \psi_0\rangle$ S = ? T = ?	Mixed
Canonical TPQ state		$\begin{aligned} \beta, N\rangle \\ \equiv e^{-N\beta \hat{h}/2} \psi_0\rangle \end{aligned}$

	Total System	Sub System
Ensemble	Mixed	Mixed
Previous Works	Pure $ \psi angle = \sum_n c_n n angle$	Mixed "Canonical Typicality"
Microcanonical TPQ state	Pure $ k\rangle = (l - \hat{h})^k \psi_0\rangle$ S = ? T = ?	Mixed
Canonical TPQ state		$\begin{aligned} \beta, N\rangle \\ \equiv e^{-N\beta \hat{h}/2} \psi_0\rangle \\ F = ? \end{aligned}$

	Total System	Sub System
Ensemble	Mixed	Mixed
Previous Works	Pure $ \psi\rangle = \sum_n c_n n\rangle$	Mixed "Canonical Typicality"
Microcanonical TPQ state	Pure $ k angle = (l - \hat{h})^k \psi_0 angle$ $\langle k k angle \leftrightarrow S$	Mixed
Canonical TPQ state		$\begin{aligned} \beta, N\rangle \\ &\equiv e^{-N\beta \hat{h}/2} \psi_0\rangle \\ \langle \beta, N \beta, N \rangle \leftrightarrow F \end{aligned}$

Table of Contents

1. Introduction

2. Canonical TPQ State

3. Microcanonical TPQ State and Its Relation to Canonical TPQ State

4. Entanglement

Setup

System:

- Discrete quantum system composed of N sites,
- The dimension of the Hilbert space is D.
- The ensemble formulation gives correct results, which are consistent with thermodynamics in $N\to\infty$
- Assume every mechanical variable \hat{A} is normalized as $\|\hat{A}\| \leq KN^m$ (To exclude foolish operators (ex. $N^N \hat{H}$)) K: Constant independent of \hat{A} and N.)
- We use quantities per site, $u\equiv E/N$ and $\hat{h}\equiv \hat{H}/N$
- The spectrum of \hat{h} is $e_{\min} \leq u \leq e_{\max}$

Canonical TPQ State PRL 111, 010401 (2013) Firstly, take a random vector $|\psi_0\rangle \equiv \sum_i c_i |i\rangle$ from the whole Hilbert space.

 $\begin{cases} \{|i\rangle\}_i & : \text{ an arbitrary orthonormal basis of} \\ \text{ the whole Hilbert space} \\ \{c_i\}_i & : \text{ a set of random complex numbers} \\ \text{ with } \sum_i |c_i|^2 = D. \end{cases}$

Notice:

This random vector $|\psi_0\rangle$ is independent of the choice of the basis set $\{|i\rangle\}_i$.

 \rightarrow Preparation of $|\psi_0\rangle$ is easy.

Canonical TPQ State PRL 111, 010401 (2013) Firstly, take a random vector $|\psi_0\rangle \equiv \sum_i c_i |i\rangle$ from the whole Hilbert space.

 $\begin{cases} \{|i\rangle\}_i & : \text{ an arbitrary orthonormal basis of} \\ \text{ the whole Hilbert space} \\ \{c_i\}_i & : \text{ a set of random complex numbers} \\ \text{ with } \sum_i |c_i|^2 = D. \end{cases}$

Then, calculate

$$|eta,N
angle\equiv\exp[-Neta\hat{h}/2]|\psi_0
angle$$
 [$\hat{h}\equiv\hat{H}/N$]

 $|\beta,N\rangle$ is the canonical TPQ state at temperature $1/\beta$

 $\begin{array}{ll} \text{Canonical TPQ State} & \stackrel{\text{PRL 111, 010401}}{(2013)} \\ \text{Mechanical Variables} \\ & \langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} \equiv \frac{\langle \beta, N | \hat{A} | \beta, N \rangle}{\langle \beta, N | \beta, N \rangle} \xrightarrow{P} \langle \hat{A} \rangle_{\beta,N}^{\text{ens}} \\ & \left[|\beta, N \rangle \equiv \exp[-N\beta \hat{h}/2] | \psi_0 \rangle \right] \end{array}$

 $\begin{array}{l} \textbf{Genuine Thermodynamic Variables} \\ \textbf{Free energy} \\ -\frac{1}{N} \ln \langle \beta, N | \beta, N \rangle \xrightarrow{P} \beta f(1/\beta; N). \\ & \left(\lambda^N : \textbf{Dimension of total Hilbert space} \right) \end{array}$

$$\overline{\langle \beta, N | \beta, N \rangle} = Z(\beta, N)$$

$$\left(\begin{array}{c} \overline{\cdots} : \text{Random average over} \quad \{c_i\}_i \\ Z(\beta, N) \equiv \text{Tr}[\exp(-N\beta\hat{h})] \\ \lambda^N : \text{Dimension of total Hilbert space} \end{array} \right)$$

$$\begin{split} & \mathbf{P}\left(\left|\langle\beta,N|\beta,N\rangle/\overline{\langle\beta,N|\beta,N\rangle}-1\right|\geq\epsilon\right) \\ & \leq \frac{1}{\epsilon^2}\frac{1}{\exp[2N\beta\{f(1/2\beta;N)-f(1/\beta;N)\}]} \\ & \leq \frac{1}{\epsilon^2}\frac{1}{\exp[\Theta(N)]} \quad \left(f(\beta;N): \text{free energy density}\right) \end{split}$$

$$\overline{\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}}} \equiv \overline{\langle \beta, N | \hat{A} | \beta, N \rangle} / \overline{\langle \beta, N | \beta, N \rangle} = \overline{\langle \hat{A} \rangle_{\beta,N}^{\text{ens}}}$$

 $\overline{\cdots}$: Random average over $\{c_i\}_i$

$$\overline{\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}}} \equiv \overline{\langle \beta, N | \hat{A} | \beta, N \rangle} / \overline{\langle \beta, N | \beta, N \rangle} = \overline{\langle \hat{A} \rangle_{\beta,N}^{\text{ens}}}$$

$$\begin{split} \mathbf{P} \left(\left| \langle \hat{A} \rangle_{\beta,N}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}} \right| \geq \epsilon \right) \\ &\leq \frac{1}{\epsilon^2} \left| \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\mathrm{ens}} + (\langle A \rangle_{2\beta,N}^{\mathrm{ens}} - \langle A \rangle_{\beta,N}^{\mathrm{ens}})^2}{\exp[2N\beta \{f(1/2\beta;N) - f(1/\beta;N)\}]} \right| \\ &\leq \frac{1}{\epsilon^2} \left| \frac{N^{2m}}{\exp[\Theta(N)]} \right| \left(\langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\mathrm{ens}} : \text{Variance of } \hat{A} \right) \end{split}$$

A single realization of a TPQ state gives the equilibrium values of all mechanical variables.

S=1/2 kagome-lattice Heisenberg antiferromagnet

Second peak vanishes as $N \to \infty$?

$$\mathbf{P}\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}}\right| \geq \epsilon\right)$$

$$\leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\text{ens}} + (\langle A \rangle_{2\beta,N}^{\text{ens}} - \langle A \rangle_{\beta,N}^{\text{ens}})^2}{\exp[2N\beta \{f(1/2\beta;N) - f(1/\beta;N)\}]}$$

Almost self-validating!

S=1/2 kagome-lattice Heisenberg antiferromagnet

$$\mathbf{P}\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}}\right| \geq \epsilon\right)$$

$$\leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\text{ens}} + (\langle A \rangle_{2\beta,N}^{\text{ens}} - \langle A \rangle_{\beta,N}^{\text{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]}$$

$$\left\{ \langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\text{ens}} \equiv \langle (\hat{A} - \langle \hat{A} \rangle_{\beta,N}^{\text{ens}})^2 \rangle_{\beta,N}^{\text{ens}} \right\}$$

$$\mathbf{P}\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}}\right| \geq \epsilon\right)$$

$$\begin{split} &\left\{ \leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\mathrm{ens}} + (\langle A \rangle_{2\beta,N}^{\mathrm{ens}} - \langle A \rangle_{\beta,N}^{\mathrm{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]} \right\} \\ &\leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\mathrm{ens}}}{\exp[N\beta\{f(0;N) - f(1/\beta;N)\}]} \\ &\left\{ \langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\mathrm{ens}} \equiv \langle (\hat{A} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}})^2 \rangle_{\beta,N}^{\mathrm{ens}} \right\} \end{split}$$

 $P\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\text{ens}}\right| \ge \epsilon\right)$

 $\left\{ \leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\text{ens}} + (\langle A \rangle_{2\beta,N}^{\text{ens}} - \langle A \rangle_{\beta,N}^{\text{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]} \right\}$ $\leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\text{ens}}}{\exp[N\beta\{f(0;N) - f(1/\beta;N)\}]}$ $\left\{ \langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\text{ens}} \equiv \langle (\hat{A} - \langle \hat{A} \rangle_{\beta,N}^{\text{ens}})^2 \rangle_{\beta,N}^{\text{ens}} \right\}$

S=1/2 kagome-lattice Heisenberg antiferromagnet

Free energy density

Temperature T

 $\left| \mathbf{P} \left(\left| \langle \hat{A} \rangle_{\beta,N}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}} \right| \geq \epsilon \right) \right|$

 $\left\{ \leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\text{ens}} + (\langle A \rangle_{2\beta,N}^{\text{ens}} - \langle A \rangle_{\beta,N}^{\text{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]} \right\}$ $\leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\text{ens}}}{\exp[N\beta\{f(0;N) - f(1/\beta;N)\}]}$ (Δf≒0.02 ≒1800 β=10J N=30

S=1/2 kagome-lattice Heisenberg antiferromagnet

Error is less than 1% down to T=0.1J!

$$\begin{split} & \mathbf{P}\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\mathrm{ens}}\right| \geq \epsilon\right) \\ & \leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\mathrm{ens}} + (\langle A \rangle_{2\beta,N}^{\mathrm{ens}} - \langle A \rangle_{\beta,N}^{\mathrm{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]} \\ & \leq \frac{1}{\epsilon^2} \frac{N^{2m}}{\exp[\Theta(N)]} \end{split}$$

Even when we replace \hat{A} by the dynamical quantities

Even when we replace A by the dynamical quantities e.g. $\hat{A}e^{-i\hat{H}t}\hat{B}$, the error is still exponentially small, because $\|\hat{A}e^{-i\hat{H}t}\hat{B}\| = \|\hat{A}\| \|e^{-i\hat{H}t}\| \|\hat{B}\| \le O(N^4m)$

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Microcanonical TPQ State and Its Relation to Canonical TPQ State
- 4. Entanglement

Microcanonical TPQ State PRL 108.240401 (2012)

Start from the same state $|\psi_0\rangle \equiv \sum_i c_i |i\rangle$, which is the random vector in the whole Hilbert space

Then, calculate

$$\begin{split} |k\rangle &\equiv (l-\hat{h})^{k} |\psi_{0}\rangle \\ u_{k} &\equiv \langle k | \hat{h} | k \rangle / \langle k | k \rangle \\ &\quad \text{for k=1,2,...} \end{split}$$

$$\hat{h} \equiv \hat{H}/N \\ l : \text{arbitrary constant} \\ \text{of O(1) s.t. } l > e_{\max}$$

|k
angle is the microcanonical TPQ state at energy u_k

Microcanonical TPQ State PRL 108.240401 (2012)

$$\begin{aligned} |k\rangle &\equiv (l - \hat{h})^{k} |\psi_{0}\rangle \\ u_{k} &\equiv \langle k | \hat{h} | k \rangle / \langle k | k \rangle \\ & \text{for k=1,2,...} \end{aligned} \begin{pmatrix} \hat{h} &\equiv \hat{H} / N \\ l &= h / N \\ l &$$

Microcanonical TPQ State PRL 108.240401 (2012)

Mechanical Variables

$$\frac{\langle k|\hat{A}|k\rangle}{\langle k|k\rangle} \xrightarrow{P} \frac{\mathrm{Tr}[\hat{A}\rho_{\mathrm{mc}}]}{\mathrm{Tr}[\rho_{\mathrm{mc}}]} \left[\rho_{\mathrm{mc}} \equiv (l-\hat{h})^{2k} \right]$$

Genuine Thermodynamic Variables Entropy $s(u_k; N) = \frac{1}{N} \ln\langle k | k \rangle - \frac{2k}{N} \ln(l - u_k) + O(N)$

 $igg| |k
angle \equiv (l-\hat{h})^k |\psi_0
angle$: Unnormalized microcanonical TPQ state at energy u_k

Analytic Relations

Canonical and microcanonical TPQ states are related by simple analytic transformations.

Advantages for Numerical Method $\exp(-\beta \hat{H})/Z \longrightarrow |\beta, N\rangle \equiv \exp[-N\beta \hat{h}/2]|\psi_0\rangle$ Many Advantages :

- Free from dimension and structure of Hamiltonian.
 Free From Negative Sign Problem Applicable to Higher Dimensional Systems
- Finite temperature.
- Less amount of calculation than a diagonalization of Hamiltonian.
- Only 2 vectors (i.e. Computer Memory) are needed

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Microcanonical TPQ State and Its Relation to Canonical TPQ State
- 4. Entanglement

Different Representations of the Same Equilibrium State

Conventional Formulation

 $\sum_{n \in \text{energy shell}} |n\rangle \langle n|, \exp(-\beta \hat{H})$

TPQ States Formulation

 $|k\rangle, |eta, N\rangle$

As far as we see macroscopic quantities, we cannot distinguish them.

Entanglement -Purity

TPQ states are almost maximally entangled

Different Representations of the Same Equilibrium State

Conventional Formulation

 $\sum_{n \in \text{energy shell}} |n\rangle \langle n|, \exp(-\beta \hat{H})$

→ At high temperature, they have little entanglement.

TPQ States Formulation

$$|k\rangle, |\beta, N\rangle$$

→TPQ states have almost maximum entanglement.

Microscopically completely different states represent the same equilibrium state.

TPQ State

$\langle k|k \rangle, \langle \beta, N|\beta, N \rangle$

Thank You!