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projection calculation
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General quantum number projection
      and configuration mixing (GCM)
Final wave function       several

symmetry broken
 HFB-type states

projectors:

kernels:

Hill-Wheeler equation (generalized eigenvalue problem)

paritynumber

amplitude

   energy
eigenvalue

ω=Euler angle (α,β,γ)



Projection calculation

kernels:

General
projection

 need to calculate:

or

or

unitary transformation

arbitrary observable

multi-dim.
numerical
integration

between
HFB-type states



Efficient method of projection and GCM

Calculation of HFB-type states
 with large basis size

● Truncation in terms of canonical basis

                                   

canonical basis → diagonalize

P-space:

 original basis
(spherical HO)

quasiparticle

c.f.  P.Bonche et al., NPA510(1990),466.  Appendix.

occupation probabilities

density
 matrix

Q=1-P



by the way, in the canonical basis,
 a HFB-type state can be written:

pair of orbits with small vi does not
 contribute to HFB-type mean-field!

(Bloch-Messiah Theorem)

canonical form



Efficient method of projection and GCM

Calculation of HFB-type states
 with large basis size

● Truncation in terms of canonical basis

● Utilize Thouless amplitude with respect to      
                              

canonical basis → diagonalize

P-space:

a Slater-determinantal state

 original basis
(spherical HO)

quasiparticle

c.f.  P.Bonche et al., NPA510(1990),466.  Appendix.

occupation probabilities

N :particle
    number

density
 matrix

Q=1-P



Truncation in canonical basis (1)

occupation probabilities of canonical basis

total num.
M =3,542 !!
for 

P-space: Lp is much smaller !!

M(Bloch-Messiah Theorem)

 spherical HO

Thouless form

sorted in descending order

canonical basis

original-basis
=spherical-HO



Truncation in canonical basis (2)
Calculation of norm overlap

But, using Thouless amplitude
MxM  determinant!

LpxLp  determinant!

The matrix dimension reduced from MxM  to LpxLp 

     Here                                                  !!

Including one-body operator,                      , it can be shown
 that the calculational effort:

LARGE REDUCTION OF CALCULATION

D:transformation matrix
    in original HO basis

(2Mx2M  pfaffian)

〜 100times

D mixes P- and Q-spaces!



by the way, the actual calculation is performed
 with using the pfaffian rather than determinant,

generally for overlap of two HFB-type states

another HFB-type state

square-root of complex number!
    →  “sign-problem”

L.M.Robledo, PRC79(2009),021302(R).

pfaffian

For 2Nx2N anti-
symmetric matrix R,

In order to calculate pfaffian, Thouless form is necessary!



Utilize Thouless form with Slater-det.(1)
Slater-determinant in canonical basis:

N :neutron/proton number

pairing correlations

additional truncation:
 core (deep hole) contributions

core-space:

One can take the no-pairing limit !!
Furthermore, 

Reduction by core truncation is restricted (need
  to calculate                      ), but effective for heavy nuclei !!

Q-spacecore

projection from HF states



Utilize Thouless form with Slater-det.(2)
occupation and emplty probabilities of canonical basis

P-spce and core-space dimentions

Reduction of effective number of space:
                                                    about 2-3 orders of magnitude!



Test of convergence
Rotational excitation spectra:

ang.mom.,
number,
parity,
 -projections

octupole deformed



Mean-field state        is generated with cranking

Choice of hamiltonian
Schematic multi-separable type,
 consistent with Woods-Saxon mean-field

 

                                      :even-odd mass diff.

Bohr-Mottelson
 textbook Vol.II

particle-hole
channel

pairing
channel

deformation by
Woods-Saxon
-Strutinsky cal.

isoscalar

Skyrme,Gogny : density-dep.
      →  some problems

                                                  :moment of inertia

Monopole pair field



 Application to
tetrahedral shape
S.Tagami, Y.R.Shimizu, and J.Dudek,
        arXiv: 1301.3278, 1301.3279.

正四面体

one of regular
  polyhedron



Tetrahedral nuclear states

nuclear
 shape

Usual quadrupole def. 
Higher point-group symmetry in nuclei ?

symmetry    degeneracies of
single-particle orbits

   stability
(shell-effect)

4-fold degenerate orbits appears  (usually 2-fold !)
X.Li and J.Dudek, PRC49(1994),R1250.

Various predictions so far:
・ Onishi-Shline, NPA165(1971),180.            4-α states

・ Takami-Yabana-Matsuo, PLB431(1998),242.
・ Yamagami-Matsuyanagi-Matsuo, NPA693(2001),579.

Skyrme HF/HFB

・ J.Dudek et al., PRL88(2002),252502; PRL97(2006),072501.
systematic calculations with
 Woods-Saxon Strutinsky and Skyrme HF/HFB approachs

Tetrahedral       : only                (no                              )



   Tetrahedral
Magic numbers:
  16,20,32,40,
  56(58),64,70,
  90,112,136

Tetrahedral shape and magic numbers

4-fold
orbits

parity broken
and non-axial
deformation



Example of potential surface calculations
Woods-Saxon universal-compact potential,
Strutinsky cal. with finite-range droplet model

Projection of Multi-dimensional (λ<9)  surface to
        (Strasbourg-Lublin-Krakow collaboration)

Tetrahedral ground state!
         (Z=70,N=90)

Quadrupole ground state!



What kind of spectra is expected
      for tetrahedral rotor?

Known in molecules

deformation → quantum rotor,
but “spherical rotor” in a sense,

But, no quadrupole moment Q2, no E2 transitions at all !

Group theory consideration
(irreducible representations of  point-group Td )

even-even nucleus with pairing

methane

as the lowest band

five irrep.'s
    A1,A2,
       E,
    F1,F2



Result of angular momentum and parity
  projection for tetrahedral shape (1)

angular momentum

1-phonon

2-phonon

3-phonon

4-phonon

5-phonon

  quasi-
vibrational

  quasi-
rotational



Result of angular momentum and parity
  projection for tetrahedral shape (2)

vibrational

rotational
∝ I(I+1)

tetrahedral rotor spectra realized!!

angular momentum



What kind of spectra is expected
      for tetrahedral rotor?  (2)

odd nuclei (half-integer spins)

    parity
conjugate

two-fold
  states

four-fold
  states

  parity
doublets

Group theory consideration
     completely
   different from
quadrupole rotor!

which becomes lowest depends
   on the last odd-nucleon orbit!

three irrep.'s



Example of calculations (1)
odd nuclear states around 80Zr (N=Z=40)

α32=0.4 and without pairing (Δ=0)

Group theory consideration OK,
   but projection necessary for precise spectra !!

sig./simplex
  splitting?

  closed-shell
+ one-particles

  closed-shell
+ one-particles

sig./simplex
  splitting?

Very new!



Example of calculations (2)
odd and two-particle states around 80Zr (N=Z=40)

α32=0.4 and without pairing (Δ=0)

Group theory consideration OK,
   but projection necessary for precise spectra !!

  closed-shell
+ two-particles

  closed-shell
+ one-particles

sig./simplex
  splitting?

sig./simplex
  splitting?

F2 seems split into three bands

Very new!



Irreducible representations of  Td -rotor
     for even-even nuclei (integer spins)

    parity
conjugate

    parity
conjugate



How demanding for computer

Full angular momentum projection is demanding!
    because of three dimensional integrals

Typical tetrahedral calculation with cranking:
   all the symmetries broken

Medium heavy nuclei with mesh of Euler angles,

Two to three days: 50 ー 70 hours by a machine
    with Xeon E5645(6cores)x2=12 CPU cores

c.f.  If the system is nearly axially symmetric,
          then the calculation is much faster!

(for sizable tetrahedral deformation)



 Application to
high-spin states
Y.Fujioka master thesis, Mar. 2012

・“ Problem” of projection
    from cranked mean-field

・ Wobbling rotational band
・ Chiral doublet band



State-of-the-art high-spin yrast spectra
E.S.Paul et al., PRL 98,012501(2007)bulk

rotational
energy
(rigid inertia)
subtracted

discrete γ up to 70 h  !



Application to high-spin states

 Angular momentum projection
   → rotational band:
                how about high-spin states?

Mean-field approximation
           Cranking method

Mean-field state        is generated with cranking

semiclassical quantization

high-spin
states

rotational frequency



Some results of projection calculation

Importance of cranking for moment of inertia

   only K=0 contributes (axially symm.),
but

K-mixing contributes,
  even if

Rotational spectra

(no configuration-mixing!)

→ larger mom.
       of inertia



“Problem” of projection from cranked mean-field
Which frequency ωrot should be used?

   extra-
ambiguity!

ωrot=0.01 MeV

0.20

0.25

0.30

0.35

0.40

exp.

needs improvement
  of Hamiltonian



● Variation after projection:                                           
   search best ωrot for each spin-values                     
    → different projection calculation for each spin 
          (very inefficient!)

● Do not use cranking!                                                   
   use projection to generate basis for shell model  
  (not only 0-q.p. but 2,4,...-q.p. states coupled)      
   → Projected Shell Model (PSM)                              
           by K.Hara and Y.Sun and collaborators

   Most successfull application of projection
● No other possibility?                                                   

  e.g., use two mean-field states for g- and s-bands 

Possible solutions



Wobbling rotational bands
Quantum mechanical motions of asymmetric-top
  → How triaxial nucleus rotates collectively? 

superposition of rotations around 3PA-axes
   → rotation-axis tilts and precesses

strong triaxial def. → coll.rot. around three PA-axes
          → phonon-like multiple bands
                from one intrinsic configuration 

strong

No-breaking of chiral symm.



TSD: triaxial superdeformed



  

Result of angular momentum projection
    for wobbling rotational bands (1)

axially symmetric (γ=0 deg.) triaxially def. (γ=18 deg.)

no wobbling bands wobbling bands appear!!
 (although moment
   of inertia is too small)

exp. exp.

predicted by Strutinsky cal.

projection from one intrinsic state

E v.s. I E v.s. I

cal. +
cal. +



  

Result of angular momentum projection
    for wobbling rotational bands (2)

projection from one intrinsic state

relative spactra B(E2)out/B(E2)in

one-phonon

two-phonon
two → one

one → zero

two → zero

rotor-model-like results obtained
   by the microscopic projection

exp. → γ changing?

triaxially def. (γ=18 deg.)

exp.

exp.

cal. +

exp.



  

Result of angular momentum projection
    for wobbling rotational bands (3)

relative spactra

one-phonon

two-phonon

difficult to simultaneously reproduce
  both one- and two-phonon energies

triaxially def. (γ=30 deg.)

relative spactra

triaxially def. (γ=35 deg.)

projection from one intrinsic state

cal. +
cal. +



Chiral doublet band

RR

odd-odd A 〜 130region

Importance of
 triaxial deformation

                      questioned?
Tonev et al., PRL96(2006),052501.



Result of two-particle rotor coupling model
Macroscopic model analysis: the original paper
   S.Frauendorf and J.Meng, NPA617(1997),131.

degenerate
two bands

γ= ー 30 deg. γ

Rotor + particle-hole



  

Result of angular momentum projection
    for chiral doublet band

even spin

odd spin

sig.-degenerate

two lowest bands
 nearly degenerate

γ=-30 deg.

Only spectra, BE2 ・ BM1 not yet calculated!!

odd-odd



  

even spin

odd spin

γ=-30 deg.sig.-splitting

No doublet bands, e.g. if ωrot increased!

ωrot =0.0 → 0.3 MeV

odd-odd



Summary
● Effective method for projection

  1) canonical-basis truncation                                         
  2) full use of Thouless amplitude

● Application to nuclei with tetrahedral shape

 Td-symmetry → specific spin-parity combinations       
  Expected spectra not only for closed-shell but also    
      for one-particle and two-particle systems                 
  However, there are considerble splittings  

● Application to high-spin states
 Wobbling bands: confirmed full-microscopically,         
           but not easy for quantitative description  

 Chiral doublet bands: seems to be existing in full-       
           microscopic calculations, need more study,        
          e.g., electromagnetic transitions etc.

from most general
 HFB-type states!
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