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1.1.	  What	  we	  can	  do	  with	  TEBD/tDMRG	
Vidal,	  PRL	  (2003);	  PRL	  (2004)	  /	  White	  and	  Feiguin,	  PRL	  (2004)	

|Ψ(t)� = exp(−iĤt/�)|Ψ0�
One	  can	  exactly	  compute	  the	  4me-‐evolu4on	  of	  the	  many-‐body	  wave	  func4on	  
in	  a	  1D	  quantum	  labce	  system	  (open	  boundary	  is	  favored).	
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Eg.	  Ising	  model	  with	  
transverse	  magne4c	  field:	

2n	  states	  are	  needed	  to	  span	  the	  en4re	  Hilbert	  space.	

We	  need	  an	  efficient	  way	  to	  describe	  the	  many-‐body	  wave	  func4on	  	  
and	  the	  4me	  propaga4on	  operator.	 Matrix	  product	  state	

Suzuki-‐TroKer	  decomposi1on	

A	  system	  of	  n	  spins	

An	  arbitrary	  state:	|Ψ� =
1�

i1,i2,i3,...,in=0

ci1,i2,i3,...,in |i1, i2, i3, . . . , in�



1.2.	  Matrix	  product	  state	  (MPS)	  representa1on	

Total	  number	  of	  the	  whole	  	  
elements	  of	  this	  MPS	

2n dχ× ×:

In	  general,	  to	  describe	  an	  arbitrary	  state,	  one	  has	  to	  take	χ ~ dn/2	

However,	  for	  the	  ground	  state	  and	  low-‐lying	  excited	  states,	  taking	  a	  finite	  χ	  
	  gives	  sufficiently	  accurate	  results.	

The	  size	  of	  MPS	  increases	  only	  linearly	  with	  n.	

An	  arbitrary	  state:	|Ψ� =
1�

i1,i2,i3,...,in=0

ci1,i2,i3,...,in |i1, i2, i3, . . . , in�

Matrix	  product	  decomposi4on	  	  

ci1i2...in =
χ�
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· · · λ[n−2]
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.

Γ: d×χ×χ-tensor, λ: χ-vector	 λ2	  is	  the	  eigenvalue	  of	  the	  	  
reduced	  density	  matrix.	
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Observa4on	  ①:	
[ ] exp( ), 0l K Kαλ α− >:

For	  the	  ground	  state,	

Observa4on	  ②:	
[ ] ( ) exp( ( ) ), ( ) 0l t K t K tαλ α− >:

For	  lowly-‐excited	  states,	

λ 

α 

Example:	  the	  ground	  state	  
of	  the	  Bose-‐Hubbard	  model	  
with	  U/J	  =	  100,	  n=400,	  	  
N=200,	  l	  =	  200.	

Taking	  a	  finite	  χ	  can	  give	  an	  accurate	  descrip4on	  of	  	  
the	  many-‐body	  wave	  func4on.	

This	  requirement	  can	  
be	  held	  only	  in	  1D	  !!	



1.3.	  Time	  propaga1on	
|Ψ(t)� = exp(−iĤt/�)|Ψ0�

Nearest	  neighbor	  Hamiltonian:	  

One-‐site	  operator:	   Two-‐site	  operator:	  K̂ [j]
1
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Separate	  the	  Hamiltonian	  into	  the	  “even”	  part	  and	  “odd”	  part	

Ĥ = Ĥeven + Ĥodd

Ĥodd ≡
�

odd j

Ĥ
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Ĥeven ≡
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Ĥ
[j] =

�

even j

(K̂ [j]
1 + K̂

[j,j+1]
2 )where	



�
�
exp(−iĤevenδ/2) exp(−iĤoddδ) exp(−iĤevenδ/2) +O(δ3)

�t/δ

Suzuki-‐TroKer	  decomposi1on:	

Now	  the	  4me	  propaga4on	  operator,	  whose	  dimension	  was	  originally	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  
	  is	  decomposed	  to	  local	  two-‐site	  operators	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	

dn × dn

d2 × d2

Opera1on	  on	  two	  neighboring	  sites:	
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2	  order	  Suzuki-‐TroKer	  decomposi1on	
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Furthermore,	
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Two	  site	  opera1on:	
c̃i1···ilil+1···in =

�

i�l,i
�
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U
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ci1···i�li�l+1···inIn	  a	  procedure	  without	  use	  of	  MPS,	

Θilil+1
αl−1αl+1

=
χ�

αl=1

λ[l−1]
αl−1

Γ[l]il
αl−1αl

λ[l]
αl

Γ[l+1]il+1
αlαl+1

λ[l+1]
αl+1

In	  the	  MPS	  descrip4on,	
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③	

Form	  a	  4-‐rank	  tensor:	

Apply	  the	  operator:	

Form	  the	  reduced	  density	  matrix:	 ρ
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Singular	  value	  decomposi4on:	④	 ρ[L] → Γ̃[l], λ̃[l] ρ[R] → Γ̃[l+1]
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⑤	Trunca4on:	χ× d→ χ Density	  matrix	  renormaliza1on!!	



Imaginary	  4me	  propaga4on：	

①	  For	  a	  given	  Hamiltonian,	  calculate	  the	  ground	  state.	  

What	  we	  wanted	  to	  do:	

②	  For	  a	  given	  ini4al	  state	  and	  a	  given	  Hamiltonian,	  	  
	  	  	  	  	  	  calculate	  the	  4me	  evolu4on.	  

|Ψg� = lim
τ→∞

exp(−Hτ)|Φprd�
|| exp(−Hτ)|Φprd�||

|Φprd� =
n�

l=1

|ψl�where	

|Ψ(t)� = exp(−iHt)|Ψg�

For	  TEBD	  extended	  to	  periodic	  boundary	  condi4on,	  
see	  Danshita	  and	  Naidon,	  PRA	  79,	  043601	  (2009)	  

Note:	  
This	  is	  not	  the	  most	  
efficient	  way	  to	  obtain	  
the	  ground	  state.	  	
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BEC 

Laser 
beams 

	  Interference	  of	  two	  counter-‐	  
	  propaga4ng	  laser	  beams	  

A	  periodic	  poten4al	  for	  atoms	  

	  	  	  =	  An	  op4cal	  labce	  

A	  BEC	  in	  a	  1D	  op4cal	  labce	  

A	  simple	  cubic	  labce	  

Laser	  beams	

V (x) = V0 sin2 (kx)

Labce	  spacing：d	  =	  π/k	  ~	  500nm	

2.1.	  What	  is	  an	  op1cal	  la<ce	  ?	

・	  Controllability	  

・	  Cleanness	  	

I.	  Bloch	  et	  al.,	  RMP	  (2008)	



M.	  P.	  A.	  Fisher	  et	  al.,	  PRB	  (1989)	  
D.	  Jaksch	  et	  al.,	  PRL	  (1998)	

Shallow	  labce	 Deep	  labce	

When	  the	  filling	  factor	  ν	  ≡	  N/L	  is	  an	  integer,	  the	  SF	  to	  MI	  transi4on	  occurs	  	  
	  with	  increasing	  U/J	  as	  demonstrated	  by	  Greiner	  et	  al.,	  Nature	  (2002).	

	  Momentum	  	  
	  distribu4on	  
	  at	  V0＝3ER	  
	

	  Momentum	  	  
	  distribu4on	  
	  at	  V0＝20	  ER	  

Hopping	  energy	

U 

Onsite	  interac4on	  

J/ER ∝ exp(−C
√

s) U/ER ∝ ass
D/4

2.2.	  Bose-‐Hubbard	  model	
Ĥ = −J

�

�j,l�

b̂
†
j b̂l +

U

2

�

j

n̂j(n̂j − 1)

	  We	  focus	  on	  the	  SF	  region	  
	  up	  to	  the	  Mou	  transi4on	  
	  in	  one	  dimension.	  	



2.3.	  1D	  gases	  produced	  by	  op1cal	  la<ces	

BEC 

A	  2D	  array	  of	  1D	  Bose	  gases	  	  
	  H.	  Moritz	  et	  al.,	  PRL	  (2003)	  	  

�ω⊥ � µ, kBT

weaker	  
	  la<ce	  

Advantages	  of	  one-‐dimensional	  systems:	

・	  Stronger	  quantum	  fluctua4ons	

・	  Reliable	  analy4cal	  and	  numerical	  methods	  are	  available	  
	  	  	  e.g.	  Bosoniza4on	  approach,	  Bethe	  ansatz,	  	  
	  	  	  	  	  	  	  	  	  	  	  Density	  matrix	  renormaliza4on	  group	  (DMRG)	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  Quantum	  Monte	  Carlo	  (even	  for	  fermions)	  



Quan4ta4ve	  comparison	  between	  
TEBD	  and	  cold-‐atom	  experiment	  
without	  free	  parameters	  !!!	

NATURE PHYSICS DOI: 10.1038/NPHYS2232 ARTICLES
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Figure 2 | Relaxation of the local density for different interaction strengths.We plot the measured traces of the odd-site population nodd(t) for four
different interaction strengths U/J (circles). The solid lines are ensemble-averaged results from t-DMRG simulations without free parameters. The dashed

lines represent simulations including next-nearest neighbour hopping with a coupling matrix element JNNN/J�0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d)

calculated from the single-particle band structure.

lattices, which gives rise to a significant amount of longer-ranged
hopping. When including a next-nearest neighbour hopping term
−JNNN

�
j(â

†
j âj+2 + h.c.) in the t -DMRG simulations we obtain

quantitative agreement with the experimental data (dashed line
in Fig. 2). For larger values of U/J and correspondingly deeper
lattices, the tight-binding approximation is valid. For U/J ∼> 10
(Fig. 2d), larger deviations are found. We attribute these to residual
inter-chain tunnelling and non-adiabatic heating. Both of these
effects become more relevant for larger values of U/J , because we
adjust this ratiomainly by tuning the tunnel coupling J .

The results of the density measurements can be related to the
expectations for an infinite chain with K = 0. There, the time
evolution can be calculated analytically in the case of either non-
interacting bosons (U/J = 0) or infinite interactions (U/J → ∞;
refs 17,18). These limiting cases can be understood well through
the mechanism of local relaxation by ballistically propagating
excitations. The on-site densities follow zeroth order Bessel
functions describing oscillations that are asymptotically dampened
by a power law with exponent −0.5. The damping we observe in
the interacting system, however, is much faster. As we will show
below, the dynamics is approximated well by a power law with an
exponent<−0.5 for the first tunnel oscillations. This behaviour has
also been found in t -DMRG simulations of homogeneous Hubbard
chains with finite interactions17,18. The exact origin of this enhanced
relaxation in the presence of strong correlations constitutes one of
themajor open problems posed by the results presented here.

Measurements of quasi-local currents
Employing the bichromatic superlattice, we were also able to detect
themagnitude and direction of quasi-local density currents. Instead
of raising the short lattice at the end of step (2), we ramped up the

long lattice to suppress the tunnel coupling through every second
potential barrier in the chain (Fig. 3a). At the same time, we set
the short lattice to a fixed value to obtain always the same value of
(U/J )DW � 0.2 in the emerging double wells. By tuning the relative
phase between the long and short lattice we were able to selectively
couple sites with index (2j,2j + 1) (‘even–odd’, j integer) or
(2j−1,2j) (‘odd–even’).We recorded the time evolution in the now
isolated double wells using the same final read-out scheme as for the
densities (see Fig. 3b). We find sinusoidal tunnel oscillations which
dephase only slowly and decrease in amplitude with increasing
relaxation time t . The phase φ and amplitude A of these oscillations
were extracted from a fit of a sine wave to the data and are plotted
in Fig. 3c as a function of the relaxation time for U/J = 5.16(7).
The phase contains the information about the direction of the mass
flow, whilst the amplitude is a combination of the local population
imbalance and the strength of the local current.

We find φ to evolve linearly in time, giving strong evidence that
the excitations in the system expand approximately ballistically,
as suggested in refs 17,18. Furthermore, its value does not change
when coupling even–odd or odd–even sites, indicating the absence
of centre-of-mass motion in the system. The amplitude A, on
the other hand, decays to zero on the same timescale as the
oscillations in the local densities dampen out—in fact the quantities
(1 ± A)/2 provide envelopes to the traces nodd and neven (see
Supplementary Information). On short timescales, 0< 4Jt/h< 3,
we find the decay of the amplitude—and therefore also that of
the density oscillations—to follow an approximate power law∝t−α

with α =0.86(7). This behaviourmight change for longer evolution
times, where no significant amplitude was measurable. We extract
the power-law coefficients α for a wide range of U/J (right inset to
Fig. 3c). In all cases, the absolute values of the coefficients are larger
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Figure 3 |Quasi-local current measurement. a, To measure the quasi-local

density flow every second tunnel coupling was suppressed, coupling either

odd–even or even–odd pairs. b, Oscillations of the odd-site population in

the double wells with fitted sine waves for t= 100 µs (solid), 200 µs

(dashed) and 400 µs (dotted). The value of U/J during the relaxation was
5.16(7). c, Extracted amplitude A and phase φ of the double-well

oscillations for odd–even (filled circles) and even–odd (open circles)

couplings. The solid lines show the respective results of the t-DMRG

simulations. The dashed lines are fits to a linear increase in the phase and a

power-law decay of the amplitude. The insets show the amplitude in a

log–log plot (left) and the extracted power-law coefficients (right). The

horizontal grey line indicates the power-law coefficient α =0.5 for free and

hardcore bosons.

than that expected for free particles (α = 0.5), again indicating the
faster relaxation in the presence of interactions.

It is key to the experiment that the observed fast damping cannot
be attributed to mere classical ensemble averaging due to the inho-
mogeneous distribution of tunnel couplings in the various chains
(var(J )/J �0.4%) or the external trap. Furthermore, we ensure that
the transverse tunnel coupling between adjacent chains J⊥ is always
one to two orders of magnitude smaller than J . Furthermore, the
dynamics of a single site—or of the densities of odd sites—cannot
be described in terms of simple rate equations, nor even in terms of
Markovian quantum master equations reflecting damped motion
(see Supplementary Information). Similarly, no dynamical mean-
field description can capture the dynamics for large U (ref. 21).
Hence, any realistic description has to necessarily include themany-
body and non-Markovian features of the dynamics, contributing to
the challenge for a numerical simulation for intermediate times.

Time evolution of the quasi-momentumdistribution
A different view on the relaxation can be obtained from the quasi-
momentum distribution of the ensemble. When instantaneously
switching off all trapping potentials after a relaxation time t and
letting the cloud expand freely for a time-of-flight tToF, the density

t-DMRG
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Figure 4 | Build-up of short-ranged correlations. a, Plot of the integrated
density profiles obtained after time-of-flight (ToF) versus 4Jt/h for
U/J= 5.16(7) as obtained in the experiment (left) and reconstructed from

numerical t-DMRG simulations (right). The images show the crossover

from a purely Gaussian distribution (t=0) to a more complex

quasi-momentum distribution (0<4Jt/h< 2) to a purely sinusoidal

pattern (4Jt/h> 2). b, Visibility of the interference patterns versus 4Jt/h
obtained experimentally (circles) and from the simulations (solid curve).

The grey line represents the measured visibility at 4Jt/h� 5, whilst the

dashed line corresponds to the value obtained from the simulation of a

homogeneous system
18
. c, Steady-state value of the visibility measured at

4Jt/h� 5. The blue solid line is the ensemble-averaged result of a

finite-temperature perturbation theory calculation without free parameters.

distribution takes the form nToF(r)∝ |�w0(mr/h̄t )|2S(mr/h̄t ). Here,
w̃0(k) is the Fourier transform of the on-site Wannier orbital and
the interference term for the ensemble of decoupled Hubbard
chains in the far-field limit is S(k) = E{N }

�
j,j � e

ikx (j−j �)d�â†
j âj � �,

with d = λxs/2 being the lattice spacing along the chain direction.
In Fig. 4a, we plot the measured density profiles integrated over
the y- and z-direction as a function of the relaxation time (left
panel) togetherwith the corresponding patterns reconstructed from
t -DMRG simulations for the full distribution of chains (right
panel) for U/J � 5. Both the experimental data and the numerical
calculation show a rapid build-up of short-range coherence, not
present in the initial state.

At short relaxation times 4Jt/h ∼< 2, the simulation data
shows a strong cosinusoidal component, with a period of
2h̄k = 2htToF/(mλxs), and weaker contributions from higher
harmonics. Whereas the former correspond to next-neighbour
coherences in the system, the latter are a signature of
correspondingly longer range coherences which rapidly decay in
the relaxation process18. Owing to the noise on the experimental
data, the higher frequency components are weak, but can
still be identified. For longer relaxation times 4Jt/h ∼> 2, only
the next-neighbour coherences remain, as also found from
t -DMRG simulations of homogeneous Hubbard chains with finite
interactions18. We extract the visibility of the lowest-frequency
component, as described in ref. 14, both from the experimental data
and the t -DMRG calculations (Fig. 4b), finding good agreement
between experiment and numerics. The visibility builds up towards
a first maximum at 4Jt/h � 0.5, corresponding to the first
maximum in nodd(t ) (Fig. 2c), followed by dampened oscillations.
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Figure 1 | Relaxation of the density pattern. a, Concept of the experiment: after having prepared the density wave |ψ(t=0)� (1), the lattice depth was
rapidly reduced to enable tunnelling (2). Finally, the properties of the evolved state were read out after all tunnelling was again suppressed (3). b, Even–odd
resolved detection: particles on sites with odd index were brought to a higher Bloch band. A subsequent band-mapping sequence was used to reveal the
odd- and even-site populations13,14. c, Integrated band-mapping profiles versus relaxation time t for h/(4J)�0.9ms, U/J= 5.16(7) and K/J� 1.7× 10−2.
d, Odd-site density extracted from the raw data shown in c. The shaded area marks the envelope for free bosons (light grey) and including inhomogeneities
of the Hubbard parameters in the experimental system (dark grey stripe near border).

retro-reflected laser beams of wavelength λxl = 1,530 nm along

one direction (‘long lattice’) and λy,z = 844 nm along the other

two. In this loading we crossed the transition to a Mott insulator,

which resulted in an occupation of not more than one particle per

site. Finally, we added to the long lattice another optical lattice

with wavelength λxs = 765 nm = λxl/2 (‘short lattice’) with the

relative phase between the two adjusted to load every second site

of the short lattice
14,20

, hereafter called the ‘even sites’. Completely

removing the long lattice gave an array of practically isolated

one-dimensional density waves |ψN � = | ...,1,0,1,0,1,...�—thus

realizing step (1)—with a distribution of particle numbers N and,

thus, lengths L = 2N − 1 given by the external confinement. All

our experiments were carried out with equivalent ensembles of

such disconnected Hubbard chains. For our system parameters,

we expect chains with a maximal particle number of Nmax � 43

and a mean value of N̄ � 31 (see Methods for details on

the loading procedure).

To initialize the many-body relaxation dynamics of step (2),

we quenched the short-lattice depth to a small value within

200 µs, allowing the atoms to tunnel along the x-direction. After
a time t , we rapidly ramped up the short lattice to its original

depth, thus suppressing all tunnelling. Finally, we read out the

properties of the evolved state in terms of densities, currents and

coherences in step (3). Note that in the experiments we always

measured the full ensemble average X(t ) = E{N }�ψN (t )|X̂ |ψN (t )�
of an observable X̂ over the array of chains (denoted by the

averaging operator E{N }), rather than the expectation value for a

single chain withN particles.

Relaxation of quasi-local densities
We first discuss measurements of the density on sites with either

even or odd index. After the time evolution, we transferred the

population on odd sites to a higher Bloch band using the superlat-

tice and detected these excitations by employing a band-mapping

technique (Fig. 1b; refs 13,14). Figure 1c shows the integrated

band-mapping profiles as a function of relaxation time for

h/(4J )� 0.9ms, U/J = 5.16(7) and K/J � 1.7×10
−2
. We plot the

resulting traces nodd(t ) in Fig. 1d. We generally observe oscillations

in nodd with a period T � h/(4J ), which rapidly dampen out

within 3–4 periods to a steady value of �0.5. The same qualitative

behaviour is found in awide range of interactions (Fig. 2).

We performed t -DMRG calculations, keeping up to 5,000

states in the matrix-product state simulations (solid lines in

Fig. 2). The Bose–Hubbard parameters used in these simulations

were obtained from the respective set of experimental control

parameters. Furthermore, we took into account the geometry of

the experimental set-up by performing the corresponding ensemble

average E{N } over chains with different particle numbers N (see

Methods). For the times accessible in the simulations, these averages

differ only slightly from the traces obtained for a single chain with

the maximum particle number Nmax = 43 of the ensemble (see

Supplementary Information). For interaction strengths U/J ∼< 6

(Fig. 2a–c), we find a good agreement of the experimental data and

the simulations. In this regime, only small systematic deviations

can be observed, which are strongest for the smallest value of U/J ,
corresponding to the smallest lattice depth. They can be attributed

to the breakdown of the tight-binding approximation for shallow

326 NATURE PHYSICS | VOL 8 | APRIL 2012 | www.nature.com/naturephysics

MPI	  group:	  I.	  Trotzky	  et	  al.,	  Nat.	  Phys.	  8,	  325	  (2012)	  

TEBD	  agrees	  very	  well	  	  
with	  the	  experiments.	

Experiments	  can	  go	  further	  than	  
TEBD	  …	

2.4.	  TEBD	  versus	  experiments	



2.5.	  Applica1ons	  of	  TEBD/tDMRG	
・	  Dynamic	  correla4on	  func4ons	

stead is a particular linear combination of spin and charge
!we will call this light mode “spinonlike”". In the limits of
nearly complete polarization or either zero or complete fill-
ing, the ↑’s become just regular fermions carrying the full
charge and spin. This scenario has been confirmed numeri-
cally in Refs. 10, 23, and 24 by looking at the real-time
evolution of spin and charge distributions.

At large negative U the 2’s do not move freely past the
0’s; this exchange happens via a virtual intermediate un-
paired state with energy #U#, resulting in effective hopping
teff=−2t2 /U. Thus this motion of 2’s relative to 0’s consti-
tutes the heavy “holonlike” mode of the Luttinger liquid with
a smaller bandwidth. Also, when a 2 moves past an ↑, the
ground state has a sign change. This means the wave func-
tion of the quasicondensate of bosonic 2’s has a node at each
↑. If these nodes were equally spaced, this would be an
FFLO standing-wave condensate with momentum !Q.
However, the ↑’s actually form a 1D Luttinger liquid with
divergent position fluctuations so the momentum distribution
of the pairs instead has a power-law divergence at !Q; this
1D partially spin-polarized superfluid state should perhaps be
termed “quasi-FFLO.”

Hamiltonian !1" can be solved exactly by means of the
Bethe ansatz,25–27 and the dispersion of the elementary exci-
tations can be obtained.28–30 However, the actual Green’s
functions and spectral properties can only be calculated in
certain limits,31 and numerical methods have been crucial to
fill in the blanks and compare to experiments.32,33 In the
following, we use the time-dependent extension of the
density-matrix renormalization-group !tDMRG" !Refs. 34
and 35" method to obtain estimates for various Green’s func-
tions in real time and real space with unprecedented
accuracy.36 To extract the dynamical response of the system,
we calculate the correlators G!x−x! , t!− t"
= i$O!x! , t!"O†!x , t"%, where O is an operator of interest. The
Fourier transforming then yields the corresponding spectral
weights as functions of momentum and frequency:34,36,37

I!k,"" = &
n

#$#n#Ok##0%#2$!" − En + E0" , !2"

where E0 is the ground-state energy and the sum runs over
all the eigenstates of the system with energy En. All the
results will be plotted using a logarithmic scale for the inten-
sity, with several orders of magnitude between the intensities
of the weakest and strongest features. At very small scales,
some ripples or oscillations appear as a consequence of the
numerical Fourier transform and the commensuration of the
lattice. These effects get amplified near zero momentum and
frequency.

In Figs. 1!a" and 1!b" we show the dynamic structure
factor for the charge and spin densities, respectively, for an
unpolarized Hubbard chain at quarter filling !in this paper we
always use L=80 and U=−8t". The charge excitations dis-
play gapless modes at momenta k=0 and k= !2kF= !% /2
and a continuum ranging from "=0 to "' t=4teff. This
spectrum is formed primarily by holon-antiholon excitations.
It is qualitatively similar to the particle-hole spectrum of the
corresponding noninteracting system but with a reduced
bandwidth. However, this system is a superfluid with a spin

gap of '5t, as is seen in the spectral weight of the spin (Fig.
1!b"); this is the energy “cost” of breaking a Cooper pair. The
spinon has bandwidth '4t, and the spectral weight of Sz
vanishes strongly as k→0 since the total spin is conserved
and the matrix element for making spin excitations thus van-
ishes at zero momentum.

The single-particle spectral weight for the quarter-filled
unpolarized system is shown in Fig. 1!c", where we plot the
imaginary part of the one-particle Green’s function. The up-
per and lower features, for positive and negative frequencies,
correspond to the inverse photoemission spectra !IPES" and
photoemission spectra !PES", resulting from adding or re-
moving a fermion, respectively. We have shifted the energies
relative to the chemical potential &= (E0!N+1"−E0!N
−1") /2, which lies in the center of the spin gap. This gap is
due to the Cooper pairing: the ground state is a total spin
singlet with all fermions paired. The added fermion has no
“partner” to pair with, while removing a fermion requires
breaking an existing pair; so both processes are gapped.

Again, we can heuristically understand many features of
these spectra using the large-negative-U description dis-
cussed above. The unpolarized ground state is a quasicon-
densate of 2’s that form a Luttinger liquid of repulsively
interacting bosons. An added ↑ forms a spinon and much of
its spectral weight thus follows a spinon dispersion with
bandwidth 4t. Since the wave function changes sign when
the ↑ exchanges position with a 2, the lowest-energy spinon
states are at the momenta !% /4 set by the density of the 2’s.
However, the added fermion may also excite holon modes,
and a careful look at the upper part of Fig. 1!c" reveals a
continuum, with a weaker feature at the lower edge of the
continuum which has a holonlike dispersion. This continuum
arises when part of the added momentum is used to excite
holon modes of the quasicondensate.

Removing a fermion requires breaking a pair !a 2", and
this process apparently couples more strongly to the holon

FIG. 1. !Color online" Dynamical structure factors of the !a"
“charge” density n!k ,"" and !b" spin Sz!k ,"" for an unpolarized
quarter-filled Hubbard chain with U=−8t. !c" Spectral weights for
adding !"'&" or removing !"(&" a fermion for the same system;
& is the chemical potential. Frequencies are in units of the hopping
t=1. The colors are set by the logarithm of the spectral intensity.
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e.g.	  Dynamic	  structure	  factor	  
	  	  	  	  	  	  	  	  for	  the	  Hubbard	  model	

stead is a particular linear combination of spin and charge
!we will call this light mode “spinonlike”". In the limits of
nearly complete polarization or either zero or complete fill-
ing, the ↑’s become just regular fermions carrying the full
charge and spin. This scenario has been confirmed numeri-
cally in Refs. 10, 23, and 24 by looking at the real-time
evolution of spin and charge distributions.

At large negative U the 2’s do not move freely past the
0’s; this exchange happens via a virtual intermediate un-
paired state with energy #U#, resulting in effective hopping
teff=−2t2 /U. Thus this motion of 2’s relative to 0’s consti-
tutes the heavy “holonlike” mode of the Luttinger liquid with
a smaller bandwidth. Also, when a 2 moves past an ↑, the
ground state has a sign change. This means the wave func-
tion of the quasicondensate of bosonic 2’s has a node at each
↑. If these nodes were equally spaced, this would be an
FFLO standing-wave condensate with momentum !Q.
However, the ↑’s actually form a 1D Luttinger liquid with
divergent position fluctuations so the momentum distribution
of the pairs instead has a power-law divergence at !Q; this
1D partially spin-polarized superfluid state should perhaps be
termed “quasi-FFLO.”

Hamiltonian !1" can be solved exactly by means of the
Bethe ansatz,25–27 and the dispersion of the elementary exci-
tations can be obtained.28–30 However, the actual Green’s
functions and spectral properties can only be calculated in
certain limits,31 and numerical methods have been crucial to
fill in the blanks and compare to experiments.32,33 In the
following, we use the time-dependent extension of the
density-matrix renormalization-group !tDMRG" !Refs. 34
and 35" method to obtain estimates for various Green’s func-
tions in real time and real space with unprecedented
accuracy.36 To extract the dynamical response of the system,
we calculate the correlators G!x−x! , t!− t"
= i$O!x! , t!"O†!x , t"%, where O is an operator of interest. The
Fourier transforming then yields the corresponding spectral
weights as functions of momentum and frequency:34,36,37

I!k,"" = &
n

#$#n#Ok##0%#2$!" − En + E0" , !2"

where E0 is the ground-state energy and the sum runs over
all the eigenstates of the system with energy En. All the
results will be plotted using a logarithmic scale for the inten-
sity, with several orders of magnitude between the intensities
of the weakest and strongest features. At very small scales,
some ripples or oscillations appear as a consequence of the
numerical Fourier transform and the commensuration of the
lattice. These effects get amplified near zero momentum and
frequency.

In Figs. 1!a" and 1!b" we show the dynamic structure
factor for the charge and spin densities, respectively, for an
unpolarized Hubbard chain at quarter filling !in this paper we
always use L=80 and U=−8t". The charge excitations dis-
play gapless modes at momenta k=0 and k= !2kF= !% /2
and a continuum ranging from "=0 to "' t=4teff. This
spectrum is formed primarily by holon-antiholon excitations.
It is qualitatively similar to the particle-hole spectrum of the
corresponding noninteracting system but with a reduced
bandwidth. However, this system is a superfluid with a spin

gap of '5t, as is seen in the spectral weight of the spin (Fig.
1!b"); this is the energy “cost” of breaking a Cooper pair. The
spinon has bandwidth '4t, and the spectral weight of Sz
vanishes strongly as k→0 since the total spin is conserved
and the matrix element for making spin excitations thus van-
ishes at zero momentum.

The single-particle spectral weight for the quarter-filled
unpolarized system is shown in Fig. 1!c", where we plot the
imaginary part of the one-particle Green’s function. The up-
per and lower features, for positive and negative frequencies,
correspond to the inverse photoemission spectra !IPES" and
photoemission spectra !PES", resulting from adding or re-
moving a fermion, respectively. We have shifted the energies
relative to the chemical potential &= (E0!N+1"−E0!N
−1") /2, which lies in the center of the spin gap. This gap is
due to the Cooper pairing: the ground state is a total spin
singlet with all fermions paired. The added fermion has no
“partner” to pair with, while removing a fermion requires
breaking an existing pair; so both processes are gapped.

Again, we can heuristically understand many features of
these spectra using the large-negative-U description dis-
cussed above. The unpolarized ground state is a quasicon-
densate of 2’s that form a Luttinger liquid of repulsively
interacting bosons. An added ↑ forms a spinon and much of
its spectral weight thus follows a spinon dispersion with
bandwidth 4t. Since the wave function changes sign when
the ↑ exchanges position with a 2, the lowest-energy spinon
states are at the momenta !% /4 set by the density of the 2’s.
However, the added fermion may also excite holon modes,
and a careful look at the upper part of Fig. 1!c" reveals a
continuum, with a weaker feature at the lower edge of the
continuum which has a holonlike dispersion. This continuum
arises when part of the added momentum is used to excite
holon modes of the quasicondensate.

Removing a fermion requires breaking a pair !a 2", and
this process apparently couples more strongly to the holon

FIG. 1. !Color online" Dynamical structure factors of the !a"
“charge” density n!k ,"" and !b" spin Sz!k ,"" for an unpolarized
quarter-filled Hubbard chain with U=−8t. !c" Spectral weights for
adding !"'&" or removing !"(&" a fermion for the same system;
& is the chemical potential. Frequencies are in units of the hopping
t=1. The colors are set by the logarithm of the spectral intensity.
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White	  and	  Affleck,	  PRB	  (2008)	  	  
Feiguin	  and	  Huse,	  PRB	  (2009)	  etc	

G(x− x
�
, t− t

�) = i�O(x�
, t

�)O†(x, t)�

I(k,ω) =
�

n

|�ψn|Ok|ψ0�|2δ(ω − En + E0)

Fourier	  transform	

・	  Non-‐equilibrium	  transport	
Al-‐Hassanieh	  et	  al.,	  PRB	  (2006);	  Feiguin	  et	  al.,	  PRL	  (2008)	  
Heidrich-‐Meisner	  et	  al.,	  EPJB	  (2009);	  Langer	  et	  al.,	  PRB	  (2009);	  	  
Heidrich-‐Meisner	  et	  al.,	  PRB	  (2009);	  Danshita	  and	  Clark,	  PRL	  (2009);	  	  
Montangero	  et	  al.,	  PRA	  (2009)	  etc	

Spectral	  weight	

・	  Quench	  dynamics,	  	  
	  	  	  especially	  across	  quantum	  cri4cal	  points	

g	
gc	

H(gi < gc)

Kollath	  et	  al.,	  PRL	  (2007);	  Manmana	  et	  al.,	  PRL	  (2007)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  etc	

H(gf > gc)
quench	  !!	

and	  more!!	

hups://nexiles.uiuc.edu/slal08/	  
www/research.html	



2.6.	  Macroscopic	  quantum	  tunneling	  (MQT)	

Collapse	  of	  Bose	  condensates	  	  
with	  aurac4ve	  interac4ons	  
	  
Spin	  flip	  of	  single-‐domain	  ferromagnets	  
	  
Phase	  separa4on	  of	  3He-‐4He	  mixtures	  	  
	  
Superflow	  decay	  via	  phase	  slips	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

See	  e.g.	  a	  book	  	  
by	  Takagi	  (2002)	

Tunneling	  of	  macroscopic	  (collec4ve)	  variables	

Phenomenon	 Macroscopic	  variable	

Radius	  of	  the	  condensate	

Magne4za4on	

Radius	  of	  a	  3He	  bubble	

Superflow	  velocity	

Sketch	  of	  a	  single-‐domain	  ferromagnet	

Magne4za4on:	  M	

Fr
ee
	  e
ne

rg
y	

Quantum	  	  
	  fluctua4ons	  

Tunneling!!	  Bez
Magne4c	  field	

Macroscopic	  quantum	  phenomenon	  of	  the	  second	  kind	



2.7.	  Tradi1onal	  method:	  Instanton	  technique	

Energy	  splibng:	  Δ	

In	  the	  semiclassical	  limit	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ),	  	� � sI

①	  For	  a	  coherent	  oscilla4on	  
	  	  	  	  	  	  	  in	  a	  symmetric	  double	  well	  	  

V(x)	

Decay	  via	  	  
tunneling!!	

V(x)	
②	  For	  a	  decay	  of	  a	  metastable	  state	  
	  	  	  	  	  	  	  in	  a	  “bumpy”	  poten4al	

Coleman,	  PRD	  (1977);	  
Callan	  and	  Coleman,	  PRD	  (1977)	  ;	  
Polyakov,	  Nucl.	  Phys.	  B	  (1977)	

Life4me	  ~	  1/Γ	Decay	  rate:	

sB :	  Bounce	  ac4on	

Γ = �A
�

sB

2π� [1 +O(�)] exp
�
−sB

�

�

Energy	  splibng:	

sI :	  Instanton	  ac4on	

:	  Coefficient	  from	  Gaussian	  fluctua4ons	

∆ = 2�A
�

sI

2π� [1 +O(�)] exp
�
−sI

�

�

A



Pros	  of	  TEBD/tDMRG	  over	  instanton	

・	  Accessible	  to	  the	  region	  far	  away	  from	  the	  semi-‐classical	  limit	

・	  Any	  observables	  can	  be	  calculated	  during	  real-‐4me	  evolu4on	

Cons	

・	  Difficult	  to	  access	  the	  strictly	  semiclassical	  limit	

・	  Restricted	  to	  1D	  systems	

・	  More	  accurate	



2.8.	  Purposes	  of	  this	  work	
We	  study	  the	  quantum	  nuclea4on	  of	  phase	  slips	  
of	  the	  1D	  Bose-‐Hubbard	  model	  in	  order	  to	  
present	  the	  first	  applica4on	  of	  TEBD	  to	  
macroscopic	  quantum	  tunneling.	  

U:	  onsite	  interac4on,	  J:	  hopping	  
:	  atom	  number	  per	  site	  (filling	  factor)	  

Advantages	  of	  this	  system:	  

2.	  The	  effec4ve	  Planck’s	  constant	  is	  well	  defined	  and	  	  
	  	  	  	  	  can	  be	  tuned	  by	  the	  Bose-‐Hubbard	  parameters	  !!!	  

1.	  Nuclea4on	  rate	  can	  be	  calculated	  by	  the	  instanton	  method	  
	  	  	  	  in	  the	  quantum	  rotor	  regime	  (ν>>1)	

3.	  Relevant	  to	  experiments	  of	  ultracold	  atomic	  gases	

Note:	  Quantum	  nuclea4on	  of	  phase	  slips	  are	  originally	  suggested	  in	  the	  context	  of	  	  
	  	  	  	  	  	  	  	  	  	  	  superconduc4ng	  nanowires	  to	  explain	  supercurrent	  decay.	  	  
	  	  	  	  	  	  	  	  	  	  	  See,	  e.g.,	  K.	  Yu.	  Arutyunov	  et	  al.,	  Phys.	  Rep.	  (2008)	
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3.1.	  Overview	  of	  coherent	  phase	  slips	

Bose-‐Hubbard	  model	  	  
with	  a	  phase	  twist:	

The	  (quasi-‐)momentum	  is	  discre4zed:	  p=2π	  n/L	

J : hopping energy,	  U : onsite interaction,	  
L : number of lattice sites, 	  

: phase twist	  
N : total number of particles	  

Ĥ = −J

L�

j=1

(e−iθ
b̂
†
j b̂j+1 + h.c.) +

U

2

L�

j=1

n̂j(n̂j − 1).

Supercurrent	  
	  flowing	  

A	  ring	  labce	

A	  current-‐free	  state	

A	  sketch	  of	  
energy	  landscape	

Our	  target	  is	  the	  tunneling	  between	  the	  states	  with	  winding	  number	  n=0	  and	  n=1.	



3.1.	  Overview	  of	  coherent	  phase	  slips	

Bose-‐Hubbard	  model	  	  
with	  a	  phase	  twist:	

J : hopping energy,	  U : onsite interaction,	  
L : number of lattice sites, 	  

: phase twist	  
N : total number of particles	  

Ĥ = −J
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j=1

(e−iθ
b̂
†
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The	  phase-‐kink	  slips	  during	  the	  tunneling	  process	  	



3.2.	  How	  to	  simulate	  the	  supercurrent	  dynamics	

①	  Imaginary	  4me	  	  
	  	  	  	  	  evolu4on	  for	  	  

We	  obtain	  a	  state	  with	  n=1,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  
	  where	  n	  is	  the	  winding	  number.	  	  

②	  Sebng	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  

	  we	  calculate	  
	  

and	  necessary	  observables.	  

|Φn=1�

e−iHt|Φn=1�
θ = θ1 = π/L



3.3.	  Time	  evolu1on	  of	  the	  flow	  velocity	

	  	  	  	  	  	  	  and	  	  	  	  	  	  	  	  	  	  	  
are	  degenerate.	  

U/J=2.5,	  (L=16,	  N=16)	  

Coherent	  oscilla4on	  between	  the	  velocity	  v(t=0)	  and	  0	  !	  

Flow	  velocity:	  v =
Jd

i�N
�

j

�b̂†j b̂j+1 − h.c.�

d:	  labce	  spacing	



3.4.	  Overlaps	  and	  momentum	  occupa1ons	

where	  	  	  	  	  	  	  	  	  	  	  	  	  is	  the	  ground	  state	  of	  
	  
	  H	  for	  the	  phase	  twist	  	  

Overlap:	  

	  n=1	  
	  	  	  =0	  
	  	  	  =-‐1	  

The	  wave	  func4on	  is	  approximately	  	  
described	  by	  a	  cat	  state,	  

:	  period	  of	  the	  oscilla4on	  T	  

The	  coherent	  oscilla4on	  is	  due	  to	  MQT!	  

∆ =
2π�
T

Energy	  splibng:	

|Φn�

θ = 2πn/L

wn(t) = |�Φn|Ψ(t)�|2



For	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  as	  he	  decreases	  the	  error	  also	  decreases	  such	  that	  
it	  is	  within	  10%	  when	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  	  

The	  error	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  significantly	  larger	  and	  does	  not	  depend	  even	  
monotonically	  on	  he.	  This	  means	  that	  at	  this	  filling	  the	  mapping	  to	  the	  
quantum	  rotor	  model	  is	  invalid.	  

L	  =	  8	  
Instanton	  energy	  splibng	  for	  ν>>1:	

3.5.	  Comparison	  between	  instanton	  and	  TEBD	

For	  L=8,	 s̃I = 7.363, A = 3.06

∆Ins

EJ
= 2LA

�
s̃I

2πhe
exp

�
− s̃I
he

�

where	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	EJ =
√
νJUν = N/L



ence of a finite onsite interaction !see Fig. 15"b#$, the degen-
eracy is broken and the emergence of the energy splitting is
characterized as an avoided crossing of the two lowest-lying
energy levels. Thus, the origin of the tunneling coupling be-
tween the two current states is the Umklapp-scattering pro-
cess caused by the onsite interaction, which is a characteris-
tic of a lattice system.

APPENDIX B: TEBD FOR LARGE FILLING FACTORS

In this appendix, we present an idea of adopting the
TEBD method to the Bose-Hubbard model when the average
number of particles per site ! "or the filling factor# is large.
The key of the idea is that in addition to the upper bound, the
lower bound for the occupation number of particle per site is
introduced in order to significantly reduce the size of the
local Hilbert space. This idea is crucial because the quanti-
tative comparison of the TEBD results with the results of the
instanton method based on the quantum rotor model is pos-
sible only for very large !"1000 "see Sec. IV#.

Let us consider a system described by the 1D Bose-
Hubbard model, Eq. "1# with L lattice sites. Spanning the
Hilbert space of the whole system by a product of local Hi-
bert spaces of dimension d, a many-body wave function of
the system is expressed as

%#& = '
j1,j2,. . .,jL=1

d

cj1,j2,. . .,jL
%j1&%j2& ¯ %jL& . "B1#

In the TEBD algorithm,22 coefficients cj1,j2,. . .,jL
are decom-

posed in a particular matrix product form as

cj1,j2,. . .,jL
= '

$1,. . .,$L−1=1

%

&$1

!1$j1'$1

!1$&$1$2

!2$j2'$2

!2$ ¯ '$L−2

!L−2$&$L−2$L−1

!L−1$jL−1

('$L−1

!L−1$&$L−1

!L$jL. "B2#

The vector '$l

!l$ represents the coefficients of the Schmidt de-
composition of %#& with respect to the bipartite splitting of
the system into !1, . . . , l−1, l$ : !l+1, l+2, . . . ,L$. The tensors
&’s constitute the Schmidt vectors together with the ' vec-
tors. % is the number of basis states, which is taken to be
sufficiently large so that the error due to this truncation is
nearly equal to zero. In our typical calculations, it ranges
from %=100 to %=250.

Usually dimension of the local Hilbert space correspond-
ing to a single site is chosen as d=nmax+1, where nmax is the
maximum number of particles per site. It is spanned by the
basis set, (%n=0& , %1& , . . . , %nmax−1& , %nmax&). While, in prin-
ciple, nmax is equal to the total number of particles in the
system, taking much smaller nmax provides converged results
in practice. For instance, for accurate determination of the
zero-temperature phase diagram of the Bose-Hubbard model
at unit filling, nmax=5 "d=6# is sufficient.41 At large filling
factors, however, this choice of the local Hilbert space basis
makes computations extremely expensive, because the com-
putational cost in TEBD scales as Ld3%3. To solve this prob-
lem, in addition to nmax, we introduce the minimum number
of particles per site nmin and span the local Hilbert space by
the basis set, (%n=nmin& , %nmin+1& , . . . , %nmax−1& , %nmax&), and
thus d=nmax−nmin+1. In the parameter region of
U / "!J#*1, where our TEBD simulations are carried out,
setting nmax=!+5 and nmin=!−5 corresponding to d=11 is
sufficient for the convergence regardless of the value of !. To

FIG. 15. "Color online# Twelve lowest energy levels with zero total quasimomentum of the Bose-Hubbard model with L=8 and !=1 as
a function of )L. The two plots correspond to "a# U=0 and "b# U=2J. "I# and "II# are magnifications of the regions indicated in "b#.

FIG. 16. "Color online# Occupation probabili-
ties P"n# "in the log-scale# of the local Fock state
%n& in the ground state of the untwisted Bose-
Hubbard model with "a# !=10 and "b# 1000,
where L=8, and U / "!J#=0.5 "red circles# and 1.0
"black squares#. Here L is the system size, ! is the
filling factor, U is the onsite interaction and J is
the hopping energy.
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demonstrate this, in Fig. 16, we plot the occupation prob-
abilities P!n" of the local Fock state #n$ in the ground state of
the Bose-Hubbard model with the filling factor !a" !=10 and
!b" !=1000. Here we set L=8, "=0, and U / !!J"=0.5
!red circles" and 1.0 !black squares". It is evident that P!n"
exponentially decays as n deviates from its average ! and
that P!n" for n#!+5 and n$!−5 is less than 10−6.
In addition, we present convergence tests for real-time dy-

namics with respect to d in Fig. 17, where the overlaps
#%%1 #&$#2 for several values of d are plotted !see Sec. III for
the definition of the overlap". Clearly, the results for d=11
are very well-converged. Thus, this truncation scheme of the
local Hilbert space is justified both for the ground state and
the real-time propagation. Note that when U / !!J"$0.5,
we take d=13 !nmax=!+6 and nmin=!−6" for better
convergence.
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4.2.	  How	  to	  simulate	  the	  supercurrent	  dynamics	

①	  Imaginary	  4me	  	  
	  	  	  	  	  evolu4on	  for	  	  

We	  obtain	  a	  state	  with	  n,	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  
	  where	  n	  is	  the	  winding	  number.	  	  

②	  Sebng	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  

	  we	  calculate	  
	  

and	  necessary	  observables.	  

θ = 0

θ = 2πn/L

|Φn�

e−iHt|Φn�

θ = 0

θ = 4π/L

Tunneling!!	  

Case	  of	  n=2	

Case	  of	  n=2	



Fitting function:	

f(t) = A exp(−Γt)

P (t) = |�Ψ(t)|Ψ(t = 0)�|2
Persistence probability:	

Flow	  velocity:	  

4.3.	  Extrac1ng	  the	  nuclea1on	  rate	  Γ	IPPEI DANSHITA AND ANATOLI POLKOVNIKOV PHYSICAL REVIEW A 85, 023638 (2012)

FIG. 6. (Color online) The red solid line represents the time
evolution of the flow velocity v(t) in the dynamics of the 1D BHM,
where L = 160, ν = 1, U/J = 3, and n = 4. The blue dashed line
represents the flow velocity at the winding number n = 3.

in our previous work that TEBD is applicable to the problem
of superflow dynamics associated with quantum phase slips
[39]. We first calculate the ground state of Eq. (33) with the
phase twist θ = 2πn/L via the imaginary time evolution, and
thereby a flowing state with the winding number n that is
metastable in the classical limit is prepared. Taking this state
as the initial state and setting θ = 0 at t = 0, we compute the
real-time evolution.

In Fig. 6, we show the time evolution of the averaged flow
velocity,

v = Jd

ih̄N

∑

j

〈b̂†j b̂j+1 − H.c.〉, (34)

for L = 160, U/J = 3, and n = 4. We see that the flow
velocity decreases in time, clearly exhibiting the superflow
decay due to quantum tunneling. However, the averaged
flow velocity does not exhibit a sudden drop by a quantized
amount, which could be a characteristic of phase slips but

FIG. 7. (Color online) The red solid line represents the time
evolution of the persistence probability P (t) in the dynamics of the 1D
BHM, where L = 160, ν = 1, U/J = 3, and n = 4. The longitudinal
axis is shown in a logarithmic scale. In the region sandwiched between
the two green dotted lines, P (t) decays exponentially. The blue dashed
line represents the best fit with a function of Eq. (35) to the data in
the exponentially decaying region.

         

         

FIG. 8. (Color online) The red circles represent the nucleation
rates of quantum phase slips $ extracted from the real-time dynamics
of the 1D Bose-Hubbard model with L = 160 as functions of the
flow (quasi-)momentum p, where U/J = 2.8 (a), 3 (b), and 3.2 (c).
The plots are shown in a log-log scale. In each plot, the blue solid
line represents the scaling formula of Eq. (31) with the constant C$

determined such that the line passes on the data point with the smallest
momentum. The TL parameters are taken from Ref. [61] as K = 2.52
(a), 2.37 (b), and 2.17 (c).

gradually decreases in time. This is because the phase slip
jump is smoothed out by taking the quantum average of many
events. In each event a phase slip occurs at a different time.
Notice that the flow velocity is constant in time if one computes
classical dynamics of the Gross-Pitaevskii equation neglecting
quantum fluctuations.

To quantify the tunneling rate from the metastable state,
i.e., the nucleation rate of quantum phase slips, we calculate
the overlap of the wave function with the initial state P (t) =
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thereby a flowing state with the winding number n that is
metastable in the classical limit is prepared. Taking this state
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In Fig. 6, we show the time evolution of the averaged flow
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decay due to quantum tunneling. However, the averaged
flow velocity does not exhibit a sudden drop by a quantized
amount, which could be a characteristic of phase slips but
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Γ ∝ L× p2K−2

Scaling	  formula	  from	  instanton:	

for	  small	  p	

TEBD	  results	  obey	  the	  scaling	  formula	  !!	

The	  Lubnger	  parameter	  is	  taken	  from	  
DMRG	  results	  by	  Kühner	  et	  al.,	  PRB	  (2000)	

Devia4on	  for	  U=3.2J	  is	  rela4vely	  large,	  
probably	  because	  it	  is	  close	  to	  the	  	  
quantum	  phase-‐transi4on	  point	  (K=2).	
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5.	  Conclusions	
We	  have	  successfully	  applied	  TEBD	  to	  a	  problem	  of	  macroscopic	  
quantum	  tunneling.	  	

・	  We	  have	  reviewed	  TEBD	  for	  systems	  with	  periodic	  boundaries.	

・	  From	  the	  persistence	  probability	  
	  	  	  we	  have	  calculated	  the	  nuclea4on	  rate	  of	  quantum	  phase	  slips	  
	  	  	  both	  for	  coherent	  oscilla4ons	  and	  decay	  of	  metastable	  states.	
・	  TEBD	  results	  are	  in	  good	  agreement	  with	  the	  instanton	  results	  
	  	  	  in	  the	  semi-‐classical	  region.	  

Other	  twists	  of	  quantum	  phase	  slips:	  	
・	  Determining	  the	  cri4cal	  point	  for	  the	  superfluid-‐Mou	  insulator	  transi4on	  
	  	  	  from	  the	  nuclea4on	  rate	

・	  Interpre4ng	  an	  experiment	  on	  cold-‐atom	  transport	  [Fer4g	  et	  al.,	  PRL	  (2005)]	  	  
	  	  	  in	  terms	  of	  quantum	  phase	  slips	

Danshita	  and	  Polkovnikov,	  PRA	  84,	  063637	  (2011)	

Danshita,	  in	  prepara4on	

P (t) = |�Ψ(t)|Ψ(t = 0)�|2


