

Physical Ingredients in Core-Collapse Supernova Explosion Mechanism

Yudai SUWA (YITP, Kyoto University)

Collaboration with

T. Takiwaki, K. Kotake (NAOJ), M. Liebendörfer, S.C. Whitehouse (U. Basel), T. Fischer (GSI),

S. Yamada (Waseda U.), K. Sato (NINS & U. Tokyo)

Core-collapse supernovae

- * One of the most energetic explosion in the universe
 - $E_{exp} \sim 10^{51} \text{ erg}$
 - E_{grav} ~10⁵³ erg (~0.1 M \odot c²)
 - $E_{\nu} \sim 10^{53} \text{ erg}$
- Formation of neutron Star / Black hole
- * Formation of gamma-ray bursts?
- All known interactions are important

•Macrophysics	Microphysics
▶Gravity	⊳Weak
core collapse	neutrino physics
▶Elecromagnetic	▶Strong
pulsar, magnetar,	equation of state of dense matter
magnetorotational explosion	

Quarks to Universe in Computational Science @ Nara

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- Dimensionality of hydrodynamics
- General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

2012/12/15

Quarks to Universe in Computational Science @ Nara

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

Systematics in supernova simulations

Dimensionality of hydrodynamics

- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

1D simulations: fail to explode

By including all available physics to simulations, we concluded that the explosion cannot be obtained in 1D!

(The exception is an 8.8 M_☉ star; Kitaura+06)

2012/12/15

Numerical simulation

YS+, PASJ, 62, L49 (2010); ApJ, 738, 165 (2011); ApJ in press (2012)

- Spherically symmetric and axisymmetric simulation (ZEUS-2D; Stone & Norman 92)
- * Hydrodynamics + Neutrino transfer

$$\begin{aligned} \frac{df}{cdt} + \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) - \frac{v}{cr} \right] D \frac{\partial f}{\partial E} \\ &= j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right] \end{aligned}$$

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- electron-type neutrino/antineutrino

Neutrino-driven explosion in multi-D simulation

Recently, we have successful exploding models driven by neutrino heating

YS, Kotake, Takiwaki, Whitehouse, Liebendörfer, Sato, PASJ, 62, L49 (2010)

The first 3D simulation with neutrino transfer

Takiwaki, Kotake, YS, ApJ, 749, 98 (2012)

$320(r)x64(\theta)x128(\phi)x20(E_{\nu})$

2012/12/15

8 /23

2012/12/15

Quarks to Universe in Computational Science @ Nara

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg Dimensionality of hydrodynamics

- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate

Collective oscillation

- * Nuclear equation of state
- Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Problems of multi-D explosions

* small explosion energy (~1049-1050 erg)

* continuous accretion <=> The remnant is NOT a NS

A possibility: the collective oscillation of neutrinos

- Because of the mass of neutrinos,
 the flavor oscillates in propagation
- * The spectrum can be different at the emission and absorption site.
- * Especially, $\nu \mu / \tau \rightarrow \nu_e$ is important
 - Reaction rate: $\sigma \propto E^2$
 - Average energy: $\nu \mu / \tau > \nu e$

Collective oscillation

YS, Kotake, Takiwaki, Liebendörfer, Sato, ApJ, 738, 165 (2011)

Radius [km]

Radius [km]

Important note

- * The matter density would suppress the collective oscillation
- * However, after the onset of the explosion the swapped spectrum might enhance the heating rate and amplify the explosion stronger
- * Numerical simulations that include the neutrino collective oscillations in a self-consistent way are required to pin down this problem!

2012/12/15

Quarks to Universe in Computational Science @ Nara

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg Dimensionality of hydrodynamics Iwakami+ 08, Nordhaus+ 10, Hanke+ 11,

- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation

Nuclear equation of state

Initial condition

- progenitor structure (mixing, wind...)
- rotation / magnetic field

Takiwaki+ 12, Couch 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Finite temperature EOSs

* Lattimer & Swesty (LS) (1991)

- based on compressible liquid drop model
- variants with K=180, 220, and 375 MeV
- * H.Shen et al. (1998, 2011)
 - relativistic mean field theory (TM1)
 - including hyperon component (~2011)

- * Hillebrandt & Wolff (1985)
 - Hartree-Fock calculation
- * G.Shen et al. (2010, 2011)
 - relativistic mean field theory (NL3, FSUGold)
- * Hempel et al. (2012)
 - relativistic mean field theory (TM1, TMA, FSUGold)

	incompressibility	symmetry energy	slope of symmetry energy
	K [MeV]	J (S) [MeV]	L [MeV]
LS	180, 220, 375	29.3	
HShen	281	36.9	111
HW	263	32.9	
GShen	271.5 (NL3)	37.29 (NL3)	118.2 (NL3)
	230.0 (FSU)	32.59 (FSU)	60.5 (FSU)
Hempel	318 (TMA)	30.7 (TMA)	90 (TMA)
	230 (FSU)	32.6 (FSU)	60 (FSU)

Quarks to Universe in Computational Science @ Nara

 $E(x,\beta) = -E_0 + \frac{1}{18}Kx^2 + \frac{1}{162}K'x^3 + \dots$

 $+\beta^2\left(J+\frac{1}{3}Lx+\ldots\right)+\ldots\,,$

Numerical simulation

- * EOS: LS180, (LS220,) LS375, and Shen
- * Axisymmetric simulation (ZEUS-2D; Stone & Norman 92)
- Hydrodynamics + Neutrino transfer

$$\frac{df}{cdt} + \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) - \frac{v}{cr} \right] D \frac{\partial f}{\partial E} \\ = j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right]$$

Note: Of course the other parameters differ as well.

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- electron-type neutrino/antineutrino
- * progenitor: 15 Mo (Woosley & Weaver 95)

Shock radius evolution depending on EOS

2012/12/15

Quarks to Universe in Computational Science @ Nara

17/23

Radius of neutron star

YS, Takiwaki, Kotake, Fischer, Liebendörfer, Sato, ApJ in press, arXiv:1206.6101

2012/12/15

Quarks to Universe in Computational Science @ Nara

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg Dimensionality of hydrodynamics Iwakami+ 08, Nordhaus+ 10, Hanke+ 11,

- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- * Nuclear equation of state
- Initial condition

progenitor structure mixing, wind...)

rotation / magnetic field

Takiwaki+ 12, Couch 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Progenitor dependence

YS, Kotake, Takiwaki, Liebendörfer, & Sato (2011)

- * Density profiles 100 ms after the bounce
- * Almost same for M<0.8M.
- * Profile for M>0.8M \odot reflect the initial profile

Shock evolution in 2D simulation

2D simulation using progenitors from Woosley & Heger (2007) 1000 T= 190 ms H07/s1520 H07/s20800 WH()7/s3(Shock Radius [km] WH07/s40 15 WH07/s55 600 WH07/s100 10 400 5 200 0 200 300 400 500 500 400 300 200 100 100200 1000 1200 400600 800 r [km] r [km] Time after Bounce [ms]

- * Several progenitors lead to shock expansion
- * No monotonic trend is found
- * What determines the difference?

What makes difference?: $\dot{M}-L_{\nu}$ curve

- * Low \dot{M} and high L_v are achieved for several progenitors, which produce the explosion
- * In order to unveil the relationship between the progenitor structure and trajectories in this plane, more systematic study is necessary...

Summary

- * For supernova modeling, there are a lot of ingredients to pin down the explosion mechanism
- * We performed multi-dimensional neutrino-radiation hydrodynamic simulations of core-collapse supernovae
- * The physical parts investigated are
 - Multi dimensionality [1D<2D<?3D] (YS+ 2010; Takiwaki, Kotake, YS 2012)
 - Effect of neutrino oscillation [potentially strengthen the explosion] (YS+ 2011)
 - Impacts of nuclear equation of state ["softer" is better] (YS+ 2012)
 - Dependence of Progenitor structure [under investigation...] (YS+ 2013?)
- * There are still a lot of tasks to do to unveil the explosion mechanism of core-collapse supernovae...

