Numerical modeling of core-collapse supernovae with progress in nuclear physics and supercomputing

K. Sumiyoshi

(Numazu College of Technology)

hubblesite.org

Talk mainly on:

• 3D calculations of neutrino-transfer

With H. Nagakura, S. Yamada, H. Matsufuru, A. Imakura, T. Sakurai

Bridge @Nara, 2012. 12. 16.

Bridging nuclear, astrophysics by supercomputers

Research products in 2008-2012 16 papers

- Equation of state (EOS) tables for supernovae
 - Shen EOS tables + Hyperons, Quarks
 - Mixture of nuclei, neutrino reactions
- Neutrino signals as probe of EOS
 - Neutrino bursts from proto-NS and BH
 - Dependence on massive stars, EOS \rightarrow Nakazato
 - 1D GR neutrino-radiation hydrodynamics
- 3D neutrino-transfer for supernovae
 - Solve Boltzmann eq. in 6D

- ApJS x 1, PTEP x 1 **JSIAM x**₁
- a new method for matrix solver

Phys. Rev x 3, ApJ x 2 IPG x 1

→ Togashi, Furusawa

Phys. Rev x 2, ApJ x 4 PLB x 1

 \rightarrow Imakura

Neutrino-transfer is important

Neutrino heating for explosion

Role of neutrinos in supernova dynamics

- Multi-dimensional effects
- Microphysics (EOS, v-reactions)
- Neutrino heating mechanism

~1% of neutrinos is used for explosion

Numerical simulation of supernovae

Combination of hydrodynamics and neutrino transfer

Astrophysics

Nuclear Physics

3D Neutrino-transfer is a challenge

Boltzmann equation in 6D

Calculation of v-radiation transfer

• Neutrino propagation from supernova core to outside with neutrino reactions in dense matter

To solve neutrino transfer in 3D

• Work in 6D: 3D space + 3D momentum

 $f_{v}(r,\theta,\phi; \varepsilon_{v},\theta_{v},\phi_{v}; t)$

– Neutrino energy (ε_v) , angle (θ_v, ϕ_v)

• Time evolution of 6D-distribution

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \vec{n}\cdot\vec{\nabla}f_{v} = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

- Left: Neutrino number change
- Right: Change by neutrino reactions
- Energy, angle-dependent reactions
 - Compositions by EOS tables

Status of neutrino-transfer

- 1D: first principle calculations
- 2D, 3D: approximate treatment
- Diffusion (with flux limiter)

Only good in central part

- Ray-by-ray (radial transport)
 Neglect lateral transport
- Need full 3D calculations

- examine the approximations, to the grand challenge
- New code to solve 3D neutrino-transfer
 - For the first time in the world See Ott et al. ApJ(2008) for 2D S_n-method

Sumiyoshi & Yamada, ApJS (2012)

Boltzmann eq. in spherical coordinate

Sumiyoshi & Yamada, ApJS (2012)

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \frac{\mu_{v}}{r^{2}}\frac{\partial}{\partial r}(r^{2}f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}\cos\phi_{v}}}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}\sin\phi_{v}}}{r\sin\theta}\frac{\partial f_{v}}{\partial\phi} + \frac{1}{r}\frac{\partial}{\partial\mu_{v}}[(1-\mu_{v}^{2})f_{v}] + \frac{\sqrt{1-\mu_{v}^{2}\cos\phi}}{r\sin\theta}\frac{\partial}{\partial\phi_{v}}(\sin\phi_{v}f_{v}) = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

- Discrete in conservative form (S_n method)
- Implicit method in time
 - stability, time step, equilibrium
- Collision term for v-reactions
 - absorption, emission, scattering

Energy, angle dependent

$$\frac{1}{c} \left(\frac{\delta f_{v}}{\delta t} \right)_{collision} = j_{emission} (1 - f_{v}) - \frac{1}{\lambda_{absoption}} f_{v} + C_{inelastic} \left[\int f_{v} (E'_{v}, \mu'_{v}) dE'_{v} \right]$$

Neutrino reactions in collision term

Basic sets for supernova simulations Bruenn (1985) + Shen

• Emission & absorption: $e^{-} + p \Leftrightarrow v_e + n$ $e^{-} + A \Leftrightarrow v_e + A'$ $e^{+} + n \Leftrightarrow \overline{v}_e + p$ • Scattering: $v_i + N \Leftrightarrow v_i + N$ $v_i + A \Leftrightarrow v_i + A$ • Pair-process: $e^{-} + e^{+} \Leftrightarrow v_i + \overline{v}_i$ 3 species: $N + N \Leftrightarrow N + N + v_i + \overline{v}_i$ $v_e, \overline{v}_e, v_\mu$

Notes: iso-energetic scattering, linearize pair process Lorentz transformation being implemented

Supercomputing aspects: matrix solver

number of iterations

- Linear equation $A\vec{f}_{y} = \vec{d}$
- Neutrino distribution
 - $N_{\text{space}} = n_r \times n_\theta \times n_\phi$ $N_v = n_\epsilon \times n_{\theta v} \times n_{\phi v}$ $N_{\text{vector}} \sim 10^6 \times 10^3$
- Iterative method pre-conditioner by Imakura larger time step is possible ~factor 10 faster

Validation of 3D-neutrino transfer code

- by analytic solutions
 - Gauss packet, free space
 - Formal solution along path
 - Approach to equilibrium
- by spherical solutions
 - Fixed backgroud
 - collapse, bounce stages
 - density, flux, moments
 - v-reactions, m. f. path

utilizing 1D v-radiation hydrodynamics (GR) by Sumiyoshi et al. ApJ (2005)

Sumiyoshi & Yamada ApJ (2012)

radius [cm]

Applications to 2D/3D supernovae

demonstration of 3D code

Axially symmetric supernova core Fix the ρ, T, Y_e profile & Solve 3D v-transfer

Axially symmetric supernova core

From small densities, the time evolution until the stationary state •

Sumiyoshi, Yamada ApJ (2012)

Advantage of 3D neutrino-transfer

Study of 3D neutrino-transfer in supernova core

3D profile by Takiwaki (2011)

3D neutrino distributions, flux, spectrum beyond approximations to explore new effects

v-heating/cooling rates in 3D

Coupling with hydrodynamics Nagakura

working on the code for 2D/3D neutrino-radiation hydrodynamics

- 2D hydro code is ready 1D collapse test

Computational load and future

- We have MPI parallel code + Hitachi tuning
- Matrix solver costs ~M³N

Matsufuru, Hashimoto

machine	space	neutrino	memory	operations
Current	256 x 32 x 64	8 x 12 x 14	2TB	6 Tera-flop
K-computer	512 x 64 x 128	12 x 24 x 20	200TB	2 Peta-flop
Exascale	512 x 128 x 256	24 x 24 x 24	3PB	80 Peta-flop

Kotake et al. PTEP (2012)

- working on KEK, planned on K-computer
- needs Exa-scale for full 3D supernovae

Summary

- Neutrino-transfer in 3 dimensions is possible
 - Code to solve Boltzmann eq. in 6D
 - Collaboration with computational scientists (A04)
 - Matrix solver, Parallel coding, Tuning
- Applying to 2D/3D supernova cores
 - Unique feature: Non-radial fluxes
 - Examine the approximations used so far
- Ready to test v-transfer + hydro. code
 - toward the grand challenge of 3D supernovae

Support from:

- HPCI Strategic Program Field 5
- Grant-in-Aid for Scientific Research (20105004, 20105005, 22540296, 24244036)
- Supercomputing resources at KEK, YITP, UT, RCNP, K-computer