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Walking Technicolor (WTC)

• a candidate of the new physics beyond the Standard Model of particles

• could replace Higgs sector of the Standard Model

• Higgs sector is a low energy effective theory of WTC

• free from the gauge hierarchy problem (naturalness)

• gives explanation of the electro-weak gauge symmetry breaking,

• thus origin of mass of the elementary particles

• “Higgs” = pseudo Nambu-Goldstone boson

•  due to breaking of the approximate scale invariance (Dilaton)
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Requirements for the successful WTC theory

• spontaneous chiral symmetry breaking

• running coupling “walks” = slowly changing with μ → nearly conformal

• large mass anomalous dimension: γm~1

• light scalar 0++   ( mH = 126 GeV @ LHC ! )

• with input Fπ = 246 /√N GeV   (N: # weak doublet in techni-sector)

• to reproduce W± mass

• typical QCD like theory: MHad>>Fπ  (ex.: QCD: mρ/fπ~8)

• Naive TC: MHad > 1,000 GeV

• 0++ is a special case: pseudo Nambu-Goldstone boson of scale inv.

➡ is it really so ?
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models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2
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Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.
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Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As

7

F.Sannino

2012年12月16日日曜日



models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2

P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
0
4

Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.

Fund

2A

2S Adj

Ladder

γ = 1 γ = 2

Ryttov & Sannino 07

SU(N) Phase Diagram

Dietrich & Sannino 07

Sannino & Tuominen 04

Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As

7

2012年12月16日日曜日



models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2

P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
0
4

Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.

Fund

2A

2S Adj

Ladder

γ = 1 γ = 2

Ryttov & Sannino 07

SU(N) Phase Diagram

Dietrich & Sannino 07

Sannino & Tuominen 04

Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As

7

2012年12月16日日曜日



Simulation

• Fermion Formulation: HISQ (Highly Improved Staggered Quarks)

• being used for state-of-the-art QCD calculations / MILC,..

• Gauge Field Formulation:tree level Symanzik gauge

• Nf=4: β=6/g2=3.7,    V=L3xT: L/T=2/3; L=12, 16

• Nf=8: β=6/g2=3.8,    V=L3xT: L/T=3/4; L=18, 24, 30, 36

• Nf=12 (two lattice spacings):   [LatKMI collab. PRD86 (2012) 054506]

• β=6/g2=3.7,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.04≦mf≦0.2

• β=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.24

• using MILC code v7, with modification: HMC and speed up in MD
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staggered flavor symmetry for Nf=12 HISQ

• comparing masses with different staggered operators for π & ρ for β=3.7

•excellent staggered flavor symmetry, thanks to HISQ
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FIG. 20. The effective mass of both two operators at β = 3.7, 4 on (L/a, T/a) = (30, 40). {fig:spectrum}

Appendix B: Analysis of conformal hypothesis fit

{sec:conformal_fit}

In this appendix we show the details of fit results on the conformal hypothesis.

In the conformal hypothesis with a finite volume, we make an attempt to use the fit

functions given in Eq. 14. In the generic situation, however, we do not know how and what

kind of such correction terms can appear from the RG analysis. Therefore in this appendix

we fix the value of the exponent α to a certain value in the fit since it is hard to determine

both two exponents of the power behavior from the fit. We consider three possible value of

alpha as α = (3 − 2γ)/(1 + γ), 1 and 2, so we denote these fit functions as fit b-1, fit b-2

and fit b-3, respectively. We carry out simultaneous fit with above fit functions using all the

data for Mπ, Fπ and Mρ with common anomalous dimension γ and α. We also use same

data points for the fit as in the section V. As already discussed in the section V, additional

correction terms improve the accuracy of the fit efficiently for both case of β = 3.7 and

β = 4. On the other hand, each of the fit results with correction term gives same magnitude

of χ2/dof. Thus in this analysis it is not easy to determine both of γ and α.
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Hadron spectrum: 
         mf-response in mass deformed theory

• IR conformal phase:

• coupling runs for μ<mf:   like nf=0 QCD with ΛQCD~mf

• multi particle state :  MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)    (criticality @ IRFP)

• SχSB phase:

• ChPT

• at leading:  Mπ2 ∝ mf,  ;   Fπ = F + c mf
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a crude study using ratios

• conformal scenario:

• MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)   for small mf

★  Fπ/Mπ → const.                          for small mf

★  Mρ/Mπ → const.                         for small mf

• chiral symmetry breaking scenario:

• Mπ2 ∝ mf,  ;   Fπ = F + c’ Mπ2      for small mf

★  Fπ/Mπ → ∞                                 for   mf → 0
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a crude analysis: Fπ/Mπ vs Mπ

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

Nf=4
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)

• spontaneous chiral symmetry breaking
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a crude analysis: Fπ/Mπ vs Mπ
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)

• spontaneous chiral symmetry breaking, likely
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a crude analysis: Fπ/Mπ vs Mπ
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a crude analysis: Fπ/Mπ vs Mπ

• β=3.7: small mass: consistent with conformal scenario

• β=4.0: volume likely to small to discuss the scaling
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TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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Nf=4

• chiral symmetry
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Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ
• one may attempt to perform a 

matching

• assuming (am)2 error is small
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ
• one may attempt to perform a 

matching

• assuming (am)2 error is small
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conformal (finite size) scaling

• Scaling dimension at IR fixed point [Wilson-Fisher];  Hyper Scaling [Miransky]

• mass dependence is described by anomalous dimensions at IRFP

• quark mass anomalous dimension

• operator anomalous dimension

• hadron mass and pion decay constant obey same scaling 

• finite size scaling in a L4 box (DeGrand; Del Debbio et al)

• scaling variable: x = Lm
1

1+γ∗

f

γ∗

Fπ ∝ m
1

1+γ∗

f

L ·MH = fH(x) L · Fπ = fF (x)

MH ∝ m
1

1+γ∗

f
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Nf=4  see if data align at some γ
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FIG. 7. ξπ plotted against the scaling variable x for γ = 0.5, 1.0, 1.5 from left to right for Nf = 4

at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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FIG. 8. ξF v.s. x for γ = 0, 1, 2 from left to right for Nf = 4 at β = 3.7. No alignment found. {fig:nf4_fpi_g}

deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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Nf=4  see if data align at some γ
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good alignment
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Nf=8  see if data align at some γ: Mπ
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Nf=12  see if data align at some γ
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FIG. 5. ξπ plotted against the scaling variable x for γ = 0.1, 0.4, 0.7 from left to right for Nf = 12

at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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measure of the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=π, ρ;   ξF=LFπ

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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measure of the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=π, ρ;   ξF=LFπ

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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measure of the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=π, ρ;   ξF=LFπ

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg

• systematic error due to small L, large m estimated by examining the x and L 
range dependence
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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summary of γ from P(γ) for Nf=12
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summary of γ from P(γ) for Nf=12

• γ: consistent with 2 σ level except for Fπ at β=4.0
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summary of γ from P(γ) for Nf=12

• γ: consistent with 2 σ level except for Fπ at β=4.0

• remember: Fπ at β=4.0 speculated to be out of the scaling region
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summary of γ from P(γ) for Nf=12

• γ: consistent with 2 σ level except for Fπ at β=4.0

• remember: Fπ at β=4.0 speculated to be out of the scaling region

• universal low energy behavior: good with 0.4<γ*<0.5
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P (γ) analysis for Nf=8
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The

21
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Mρ 0.459(8)
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However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The

21

quantity γ
Mπ 0.434(4)
Fπ 0.516(12)
Mρ 0.459(8)

• Optimal γ obtained for each quantity

• γ scattered→no exact conformality

• scaling→remnant conformality

2012年12月16日日曜日



P (γ) analysis for Nf=8

quantity γ
Mπ 0.593(2)
Fπ 0.955(4)
Mρ 0.844(10)

Nf=8

statistical error only

Nf=12

0.3 0.4 0.5 0.6 0.7 0.8
 !

1

10

100

1000

10000

P

M
"
 (linear)

M
"
 (quadratic)

F
"
 (linear)

F
"
 (quadratic)

M
#
 (linear)

M
#
 (quadratic)
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plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The
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plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The
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• Optimal γ obtained for each quantity
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candidate of walking TC
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0++                spectrum

                     [preliminary]
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motivation

• adding another quantity to the scaling analysis

• see if light 0++ state (→ Higgs in WTC) emerges

• noisy,  thus,  difficult quantity in QCD
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method

• 0++ glueball

• variational method with many ops. (e.g. E. Gregory et al arXiv:1208.1858)

• flavor singlet scalar from fermion bilinear

• stochastic estimator with 64 random vectors

• high statistics: a few 1000 ~14000 configurations
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Results: scalar glueball

L=18 → am=0.867(32)
L=24 → am=0.785(69)
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Results: scalar glueball

L=18 → am=0.604(45)
L=24 → am=0.546(65)
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Results: scalar glueball

L=18 → am=0.187(36)
L=24 → am=0.281(59)
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Results: scalar flavour-singlet meson
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Results: scalar flavour-singlet meson

C0+(t) = 2C(t) + C(t+ 1) + C(t− 1)

C0−(t) = 2C(t)− C(t+ 1)− C(t− 1)
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Results: summary
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Results: summary
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• 0++ lighter than pion

• needs to explore flavor singlet for other mf

➡hope to have light 0++: Higgs for Nf=8
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Summary and Outlook

• SU(3) gauge theory + Nf fundamental fermions

• Nf=12 likely conformal

• Nf=8  candidate of WTC

• existence of light 0++ is promising!

• Nf=12, 0++ be continued

• Nf=8 large scale simulation

• detailed chiral analysis for F, mHad, m0++

• anomalous dimension γ  (method that does not assume conformality)

• S parameter...
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Thank you for your attention
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