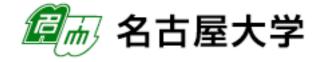
Exploring for walking technicolor from QCD

Yasumichi Aoki [Kobayashi-Maskawa Institute(KMI), Nagoya University]

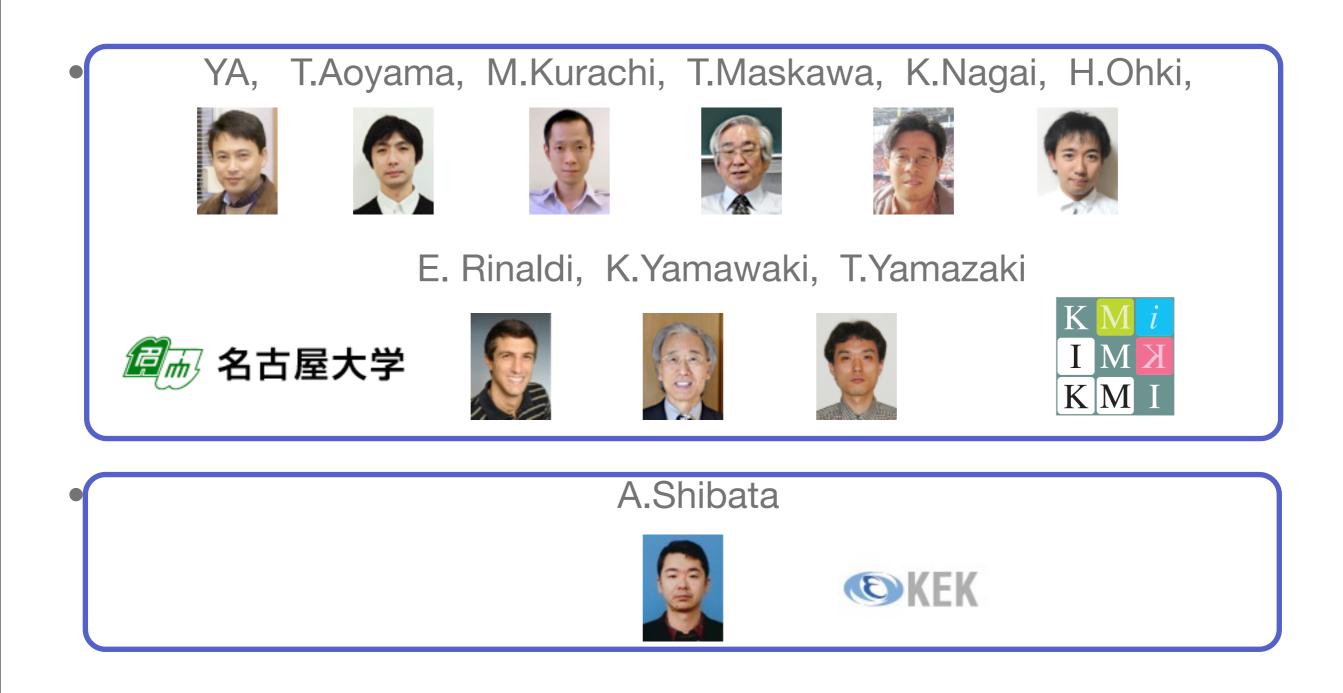
for the LatKMI collaboration

- QUCS 2012 symposium @ Nara -

Dec. 16, 2012



LatKMI collaboration

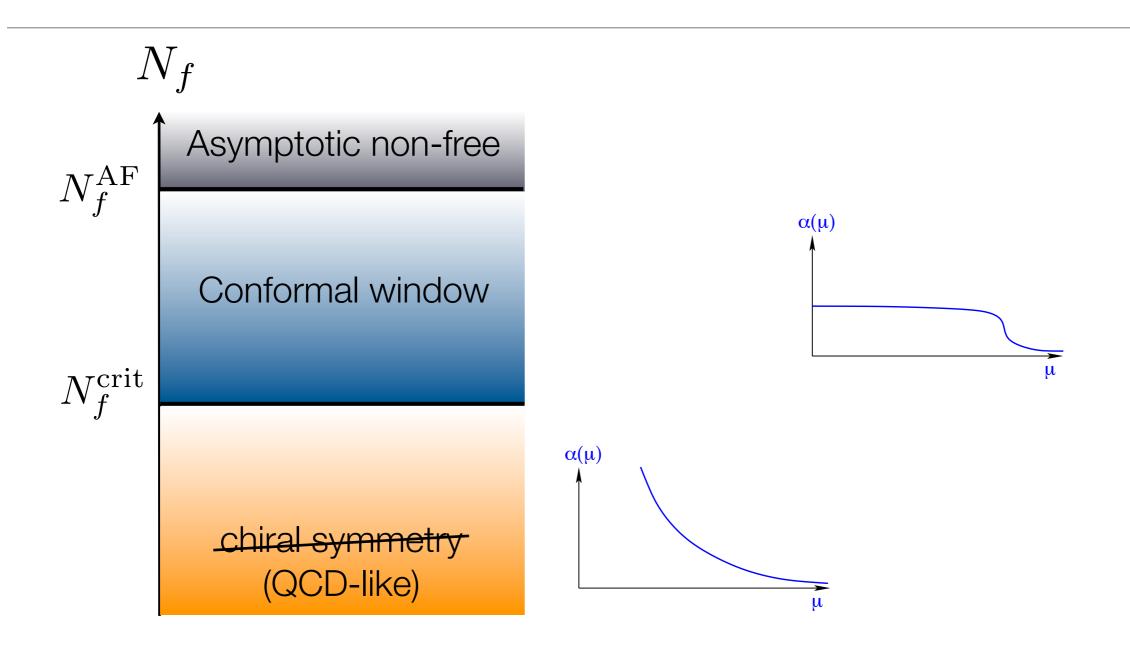


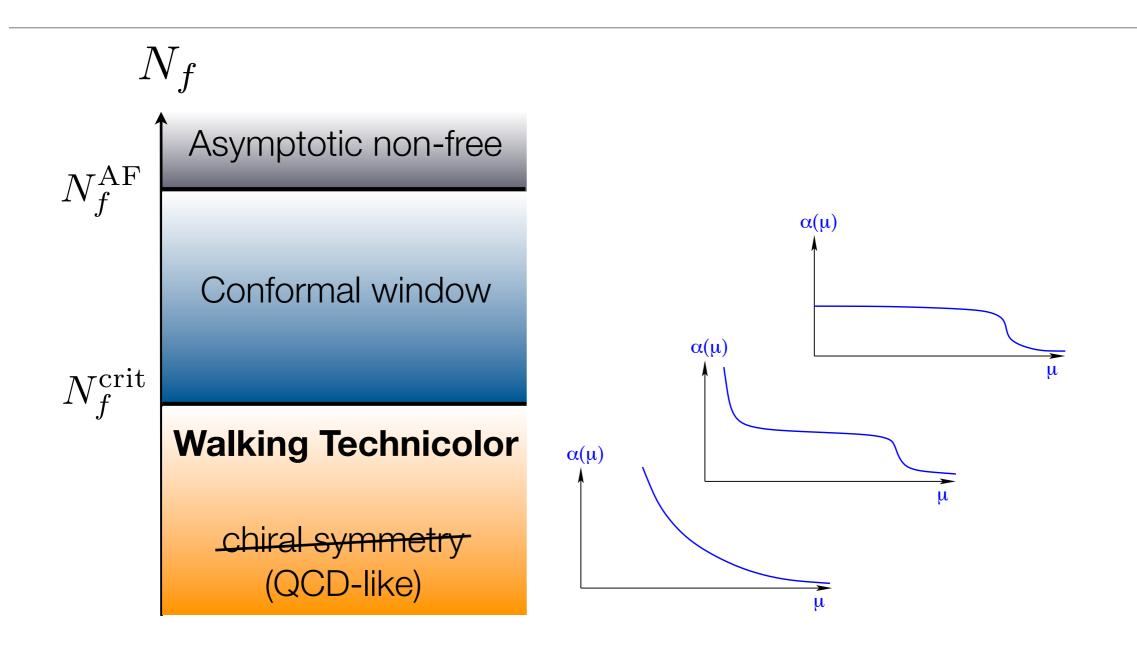
Walking Technicolor (WTC)

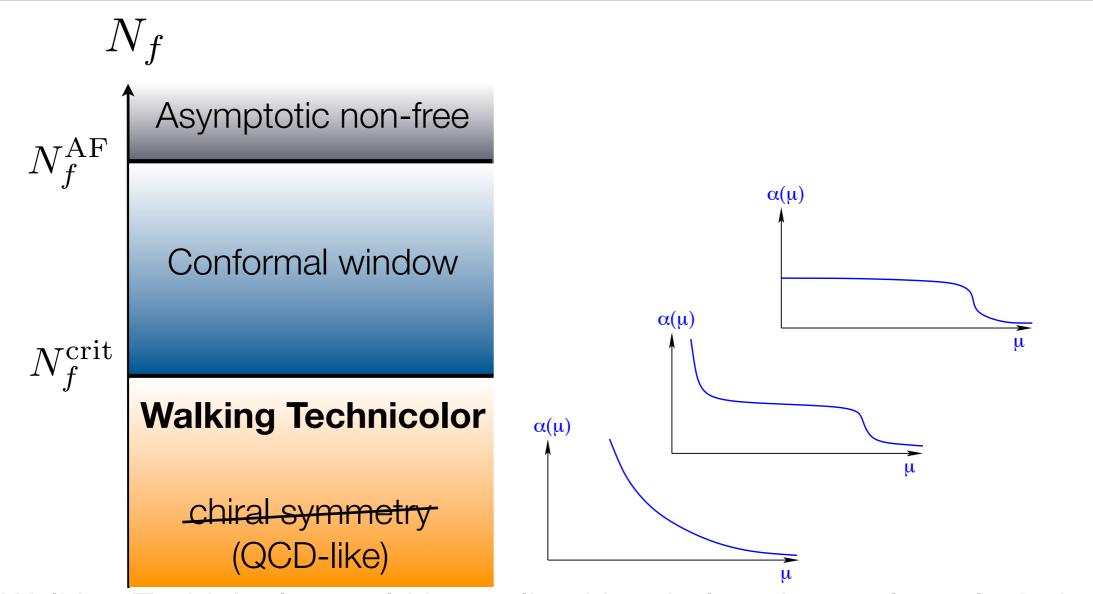
- a candidate of the new physics beyond the Standard Model of particles
- could replace Higgs sector of the Standard Model
 - Higgs sector is a low energy effective theory of WTC
- free from the gauge hierarchy problem (naturalness)
- gives explanation of the electro-weak gauge symmetry breaking,
 - thus origin of mass of the elementary particles
- "Higgs" = pseudo Nambu-Goldstone boson
 - due to breaking of the approximate scale invariance (Dilaton)

Requirements for the successful WTC theory

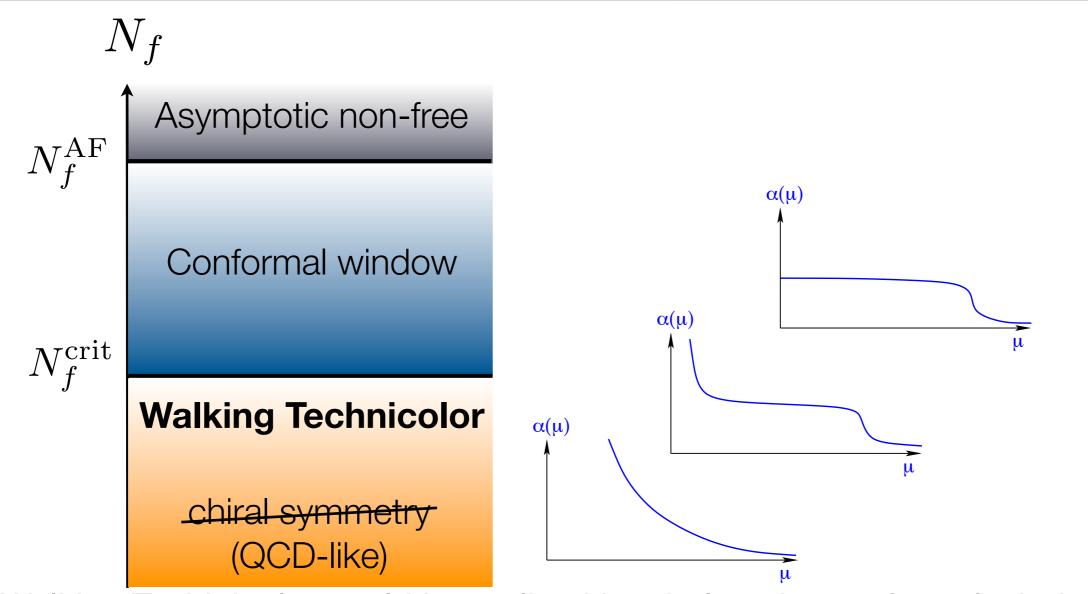
- spontaneous chiral symmetry breaking
- running coupling "walks" = slowly changing with $\mu \rightarrow$ nearly conformal
- large mass anomalous dimension: $\gamma_m{\sim}1$
- light scalar 0^{++} (m_H = 126 GeV @ LHC !)
 - with input $F_{\pi} = 246 / \sqrt{N \text{ GeV}}$ (N: # weak doublet in techni-sector)
 - to reproduce W[±] mass
 - typical QCD like theory: $M_{Had} >> F_{\pi}$ (ex.: QCD: $m_{\rho}/f_{\pi} \sim 8$)
 - Naive TC: M_{Had} > 1,000 GeV
 - 0⁺⁺ is a special case: pseudo Nambu-Goldstone boson of scale inv.
 - ➡ is it really so ?





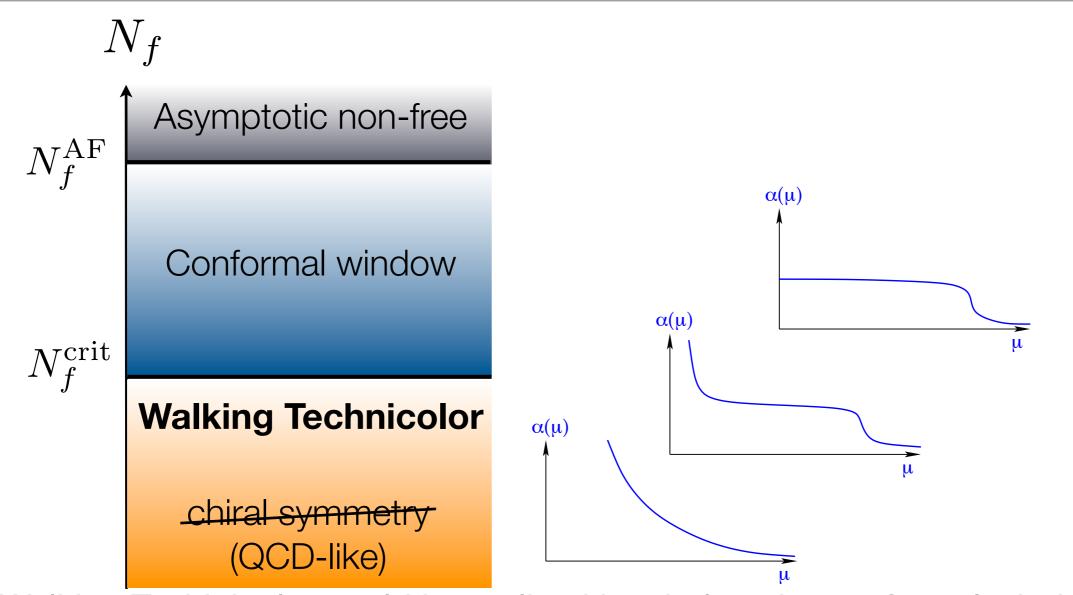


• Walking Techinicolor could be realized just below the conformal window



• Walking Techinicolor could be realized just below the conformal window

• crucial information: N_f^{crit} and...



• Walking Techinicolor could be realized just below the conformal window

- crucial information: N_f^{crit} and...
- mass anomalous dimension γ & the composite mass spectrum around $N_f{}^{crit}$

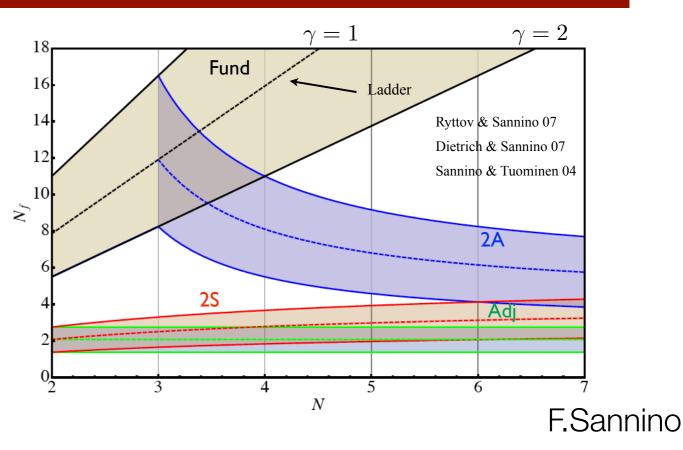
2012年12月16日日曜日

models being studied:

• SU(3)

- fundamental: Nf=6, 8, 10, 12, 16
- sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

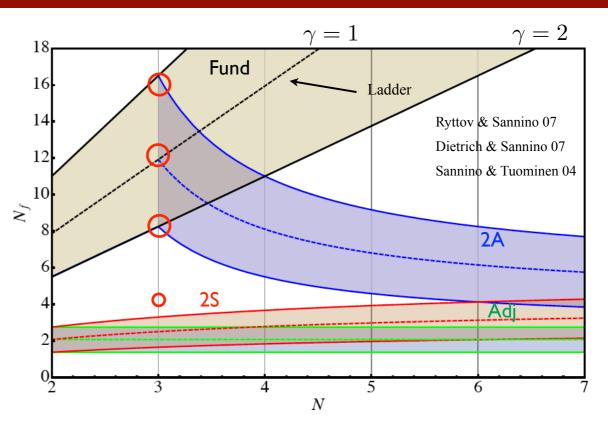
SU(N) Phase Diagram



models being studied:

- SU(3)
 - fundamental: Nf=6,(8,)10,(12,(16))
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

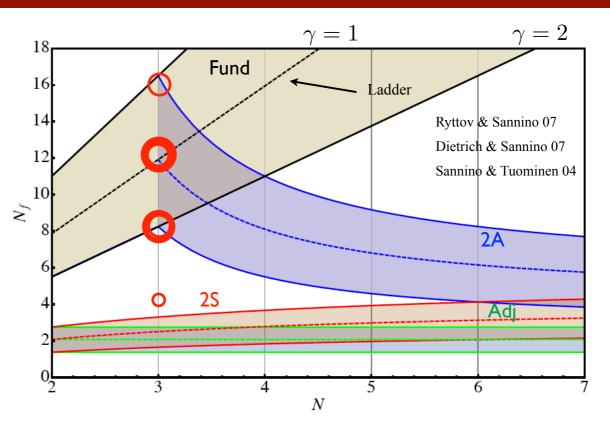
SU(N) Phase Diagram



models being studied:

- SU(3)
 - fundamental: Nf=6 8,10,12 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram



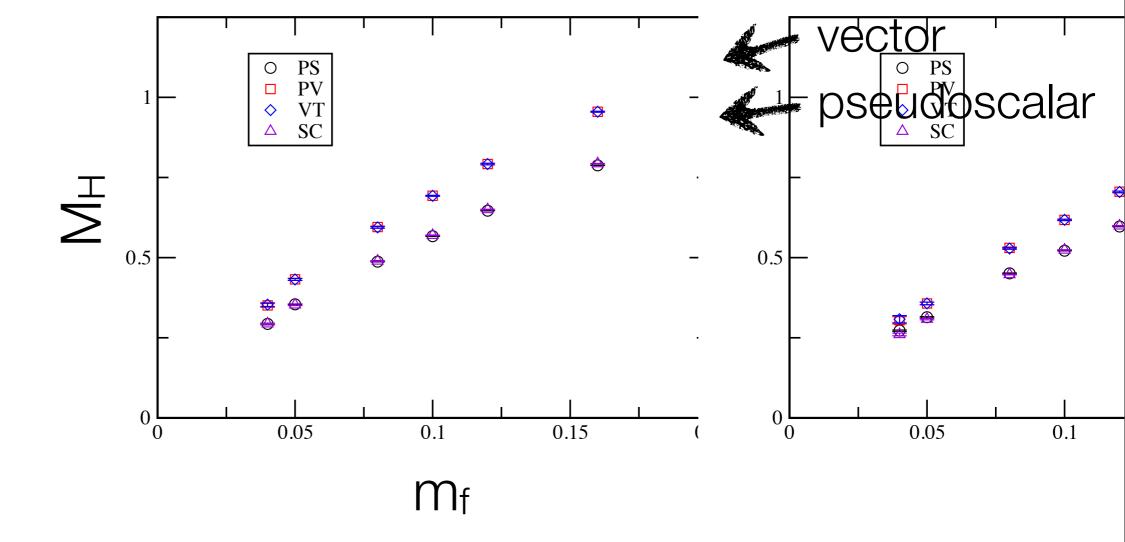
Simulation

- Fermion Formulation: HISQ (Highly Improved Staggered Quarks)
 - being used for state-of-the-art QCD calculations / MILC,...
- Gauge Field Formulation:tree level Symanzik gauge
- N_f=4: β =6/g²=3.7, V=L³xT: L/T=2/3; L=12, 16
- N_f=8: β =6/g²=3.8, V=L³xT: L/T=3/4; L=18, 24, 30, 36
- N_f=12 (two lattice spacings): [LatKMI collab. PRD86 (2012) 054506]
 - $\beta = 6/g^2 = 3.7$, V=L³xT: L/T=3/4; L=18, 24, 30, 0.04 \le m_f \le 0.2
 - $\beta = 6/g^2 = 4.0$, V=L³xT: L/T=3/4; L=18, 24, 30, 0.05 \le m_f \le 0.24

• using MILC code v7, with modification: HMC and speed up in MD

staggered flavor symmetry for $N_f=12$ HISQ

comparing masses with different staggered operators f



• excellent staggered flavor symmetry, the

Hadron spectrum: mf-response in mass deformed theory

- IR conformal phase:
 - coupling runs for $\mu < m_f$: like $n_f=0$ QCD with $\Lambda_{QCD} \sim m_f$
 - multi particle state : $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ (criticality @ IRFP)

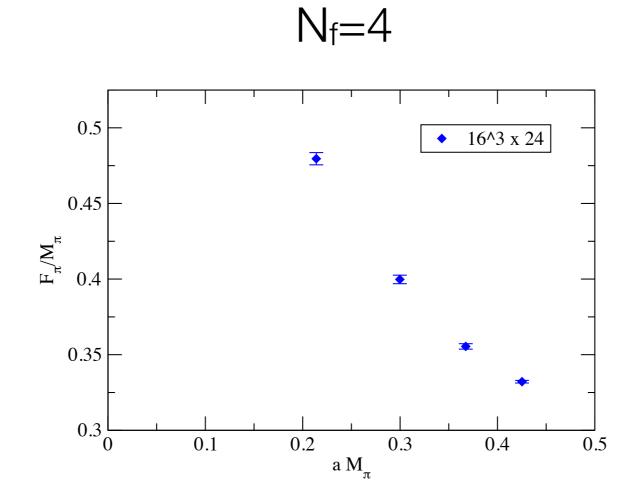
• S χ SB phase:

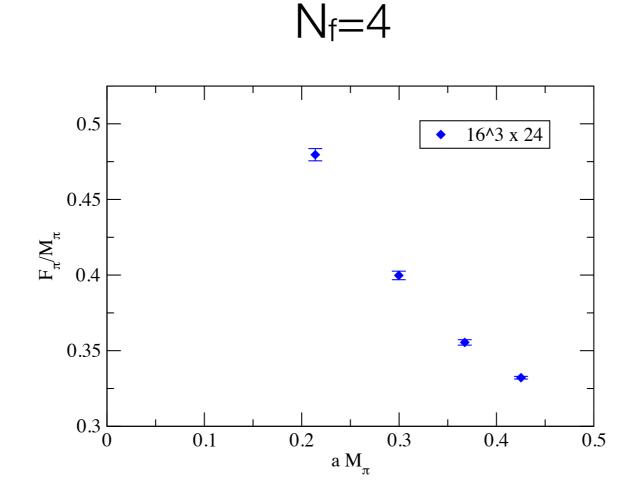
- ChPT
- at leading: $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c m_f$

a crude study using ratios

• conformal scenario:

- $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ for small m_f
- ★ F_{π}/M_{π} → const. for small m_{f}
- ★ M_{ρ}/M_{π} → const. for small m_{f}
- chiral symmetry breaking scenario:
 - $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c' M_{\pi^2}$ for small m_f
 - $\bigstar \ F_{\pi}/M_{\pi} \rightarrow \infty \qquad \qquad \text{for} \ m_f \rightarrow 0$



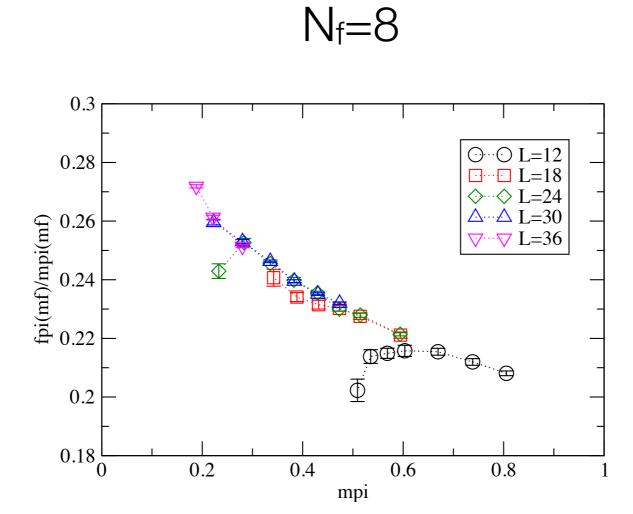


[•] tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)

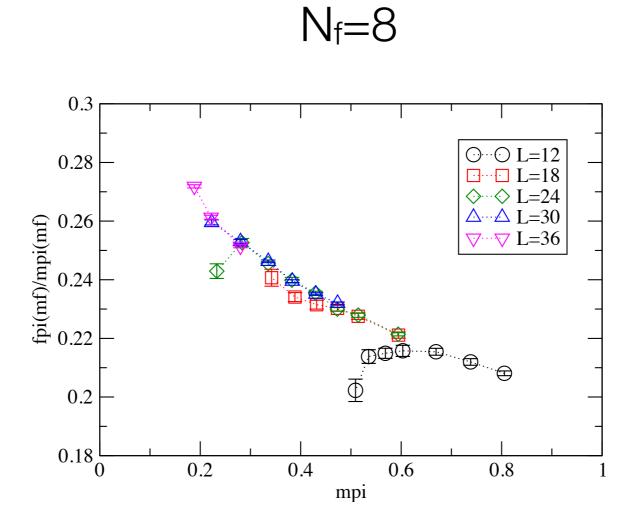


- tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)
- spontaneous chiral symmetry breaking

 π/M_{π}

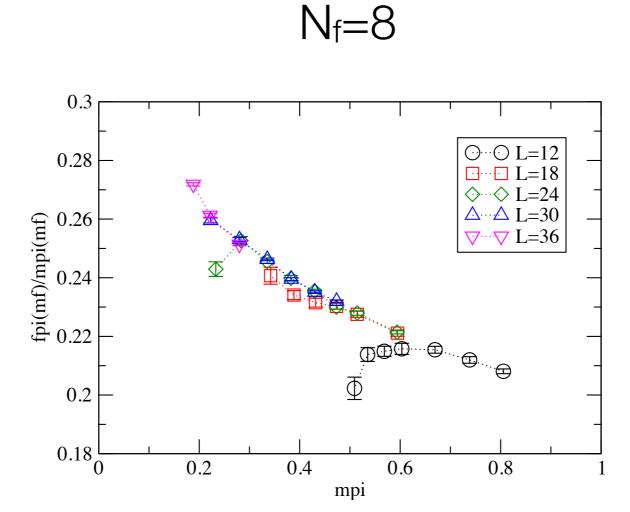


 π/M_{π}

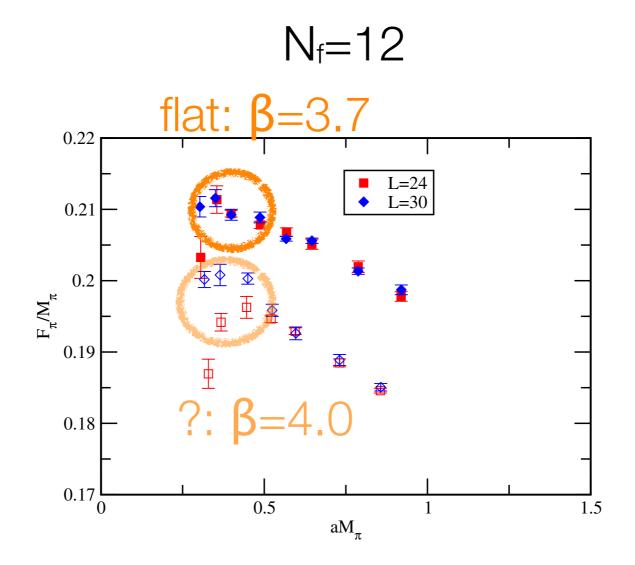


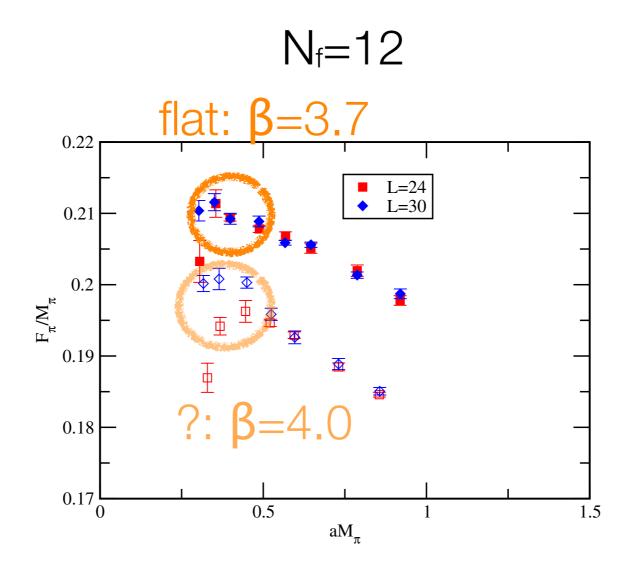
• tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)

 π/M_{π}



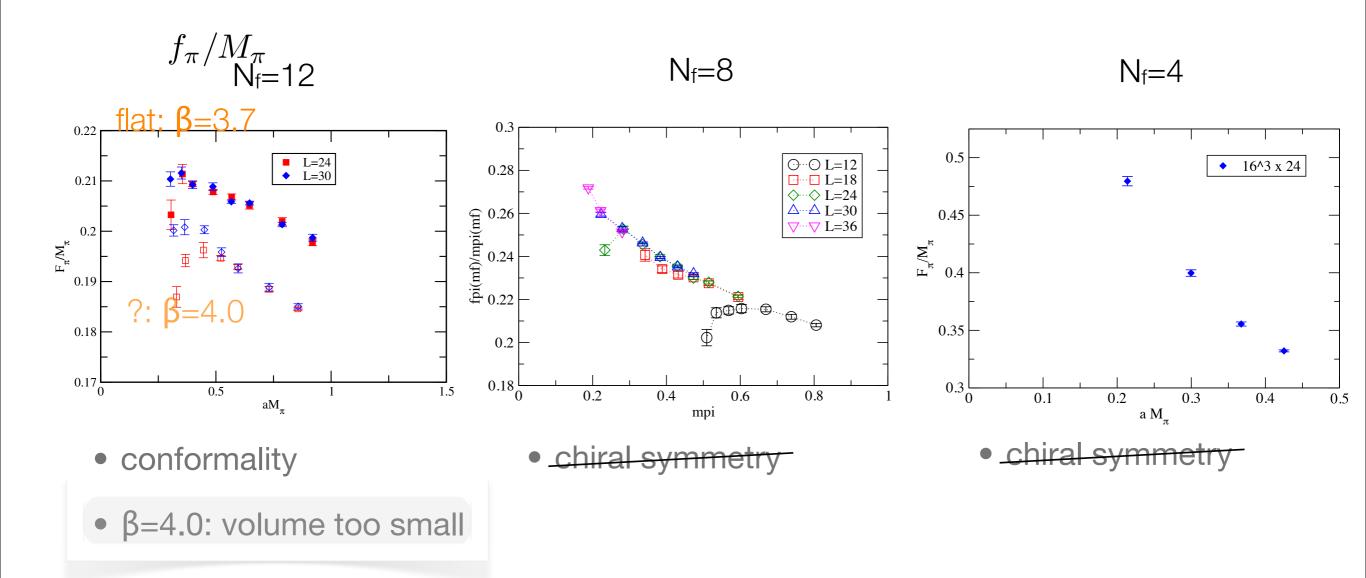
- tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)
- spontaneous chiral symmetry breaking, likely



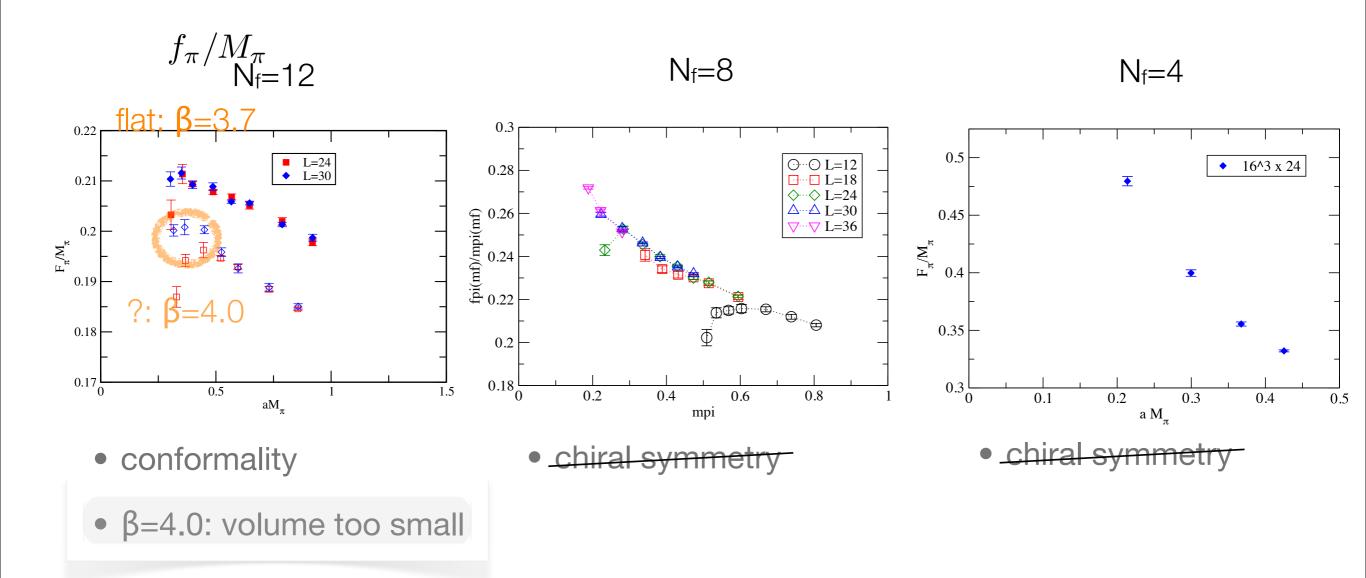


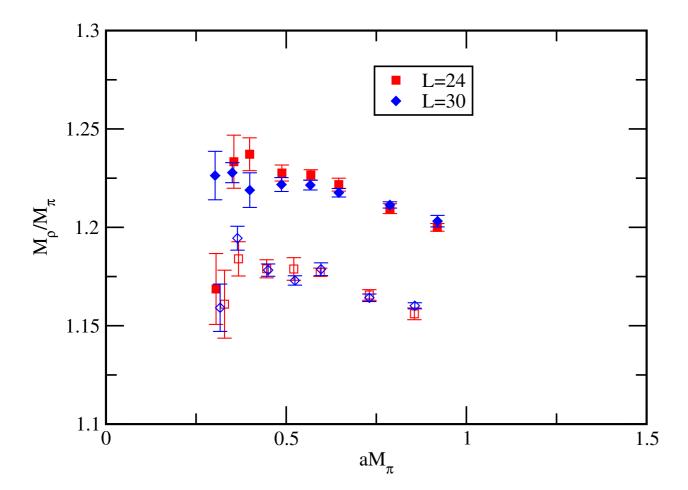
- β =3.7: small mass: consistent with conformal scenario
- β =4.0: volume likely to small to discuss the scaling

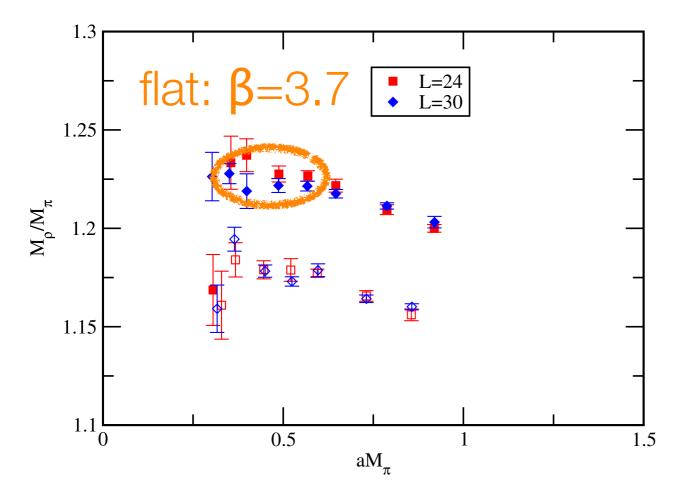
a crude analysis: F_{π}/M_{π} vs M_{π} leads to a likely scenario



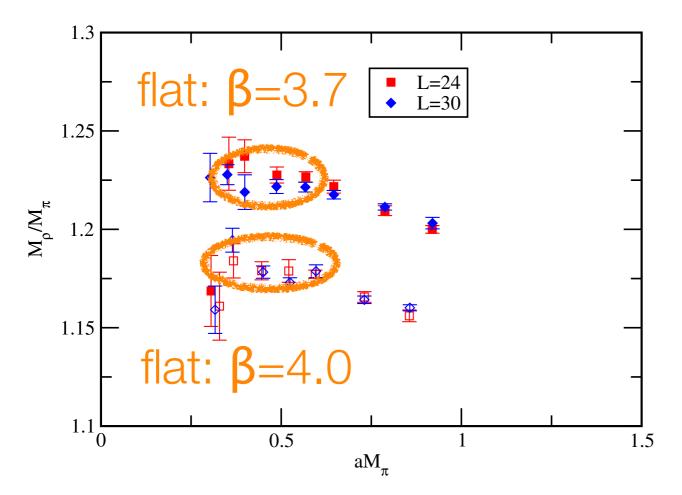
a crude analysis: F_{π}/M_{π} vs M_{π} leads to a likely scenario





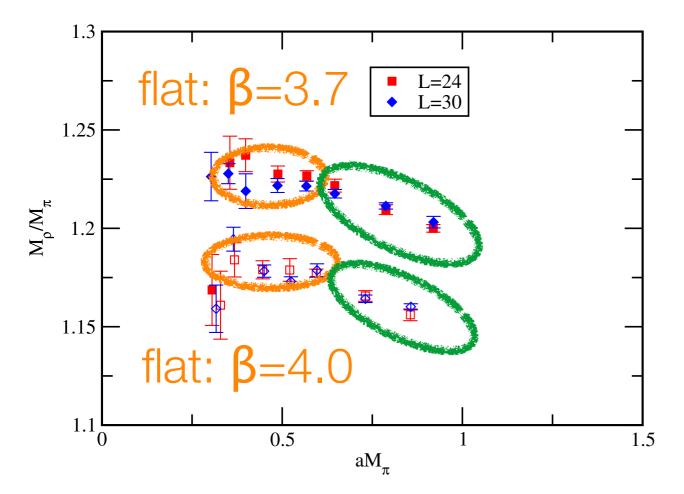


N_f=12: HISQ



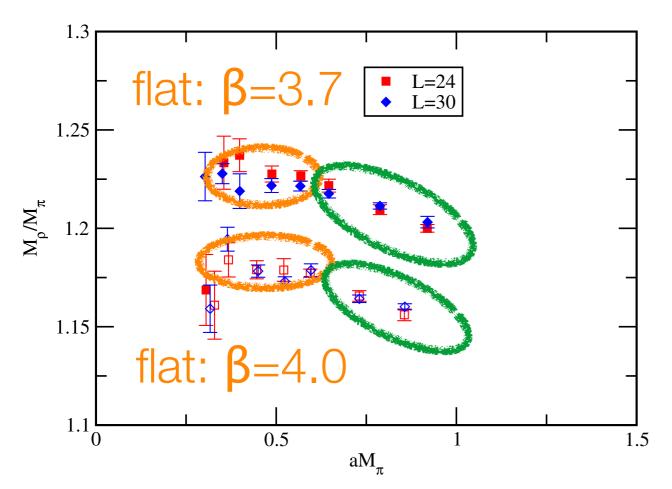
• β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)

N_f=12: HISQ



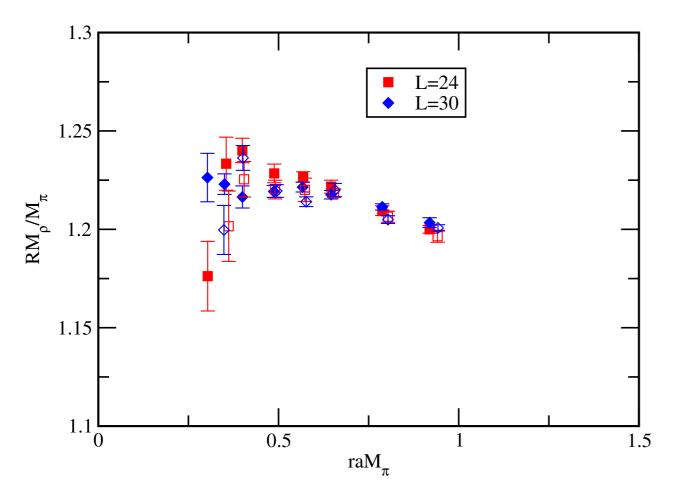
• β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS



- one may attempt to perform a matching
- assuming (am)² error is small

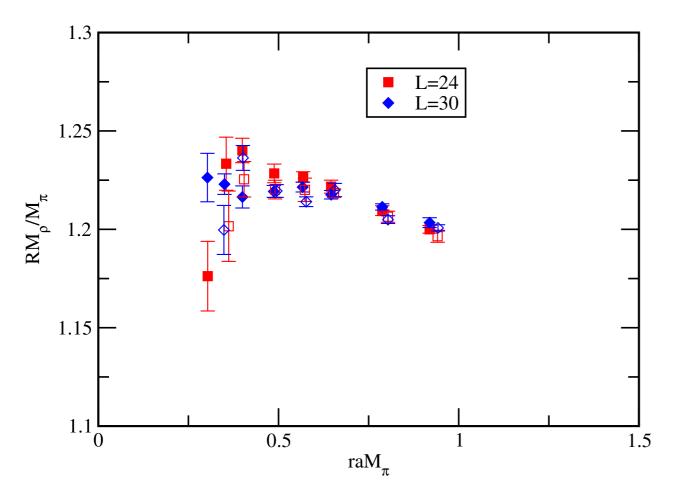
- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS



- one may attempt to perform a matching
- assuming (am)² error is small

⇒
$$a(\beta=3.7) / (\beta=4.0) > 1$$

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS



- one may attempt to perform a matching
- assuming (am)² error is small

⇒
$$a(\beta=3.7) / (\beta=4.0) > 1$$

- movement: correct direction in asymptotically free domain !
- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

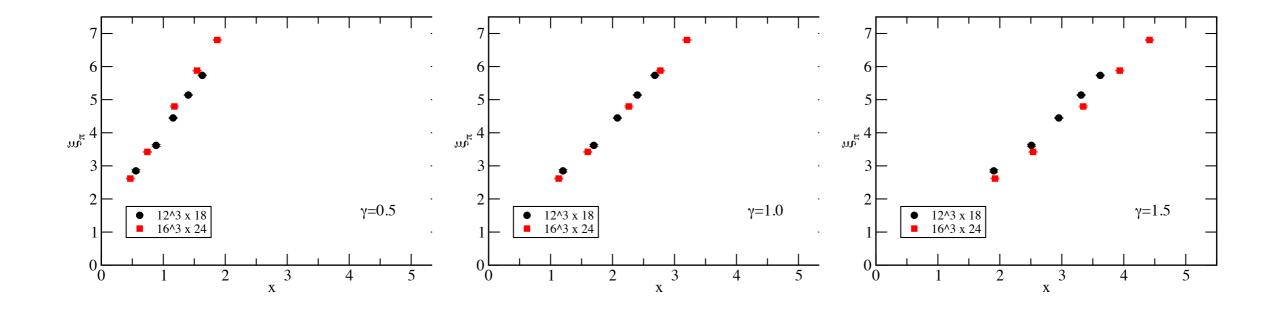
conformal (finite size) scaling

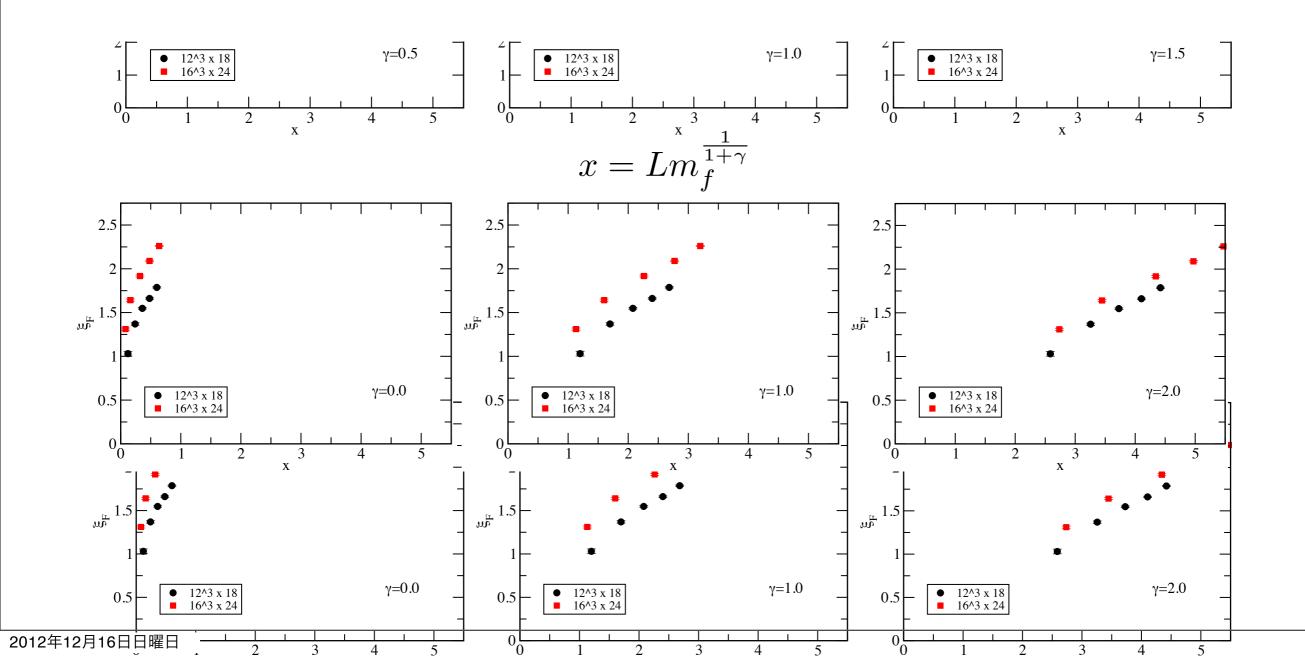
- Scaling dimension at IR fixed point [Wilson-Fisher]; Hyper Scaling [Miransky]
- mass dependence is described by anomalous dimensions at IRFP
 - quark mass anomalous dimension γ^{*}
 - operator anomalous dimension
- hadron mass and pion decay constant obey same scaling

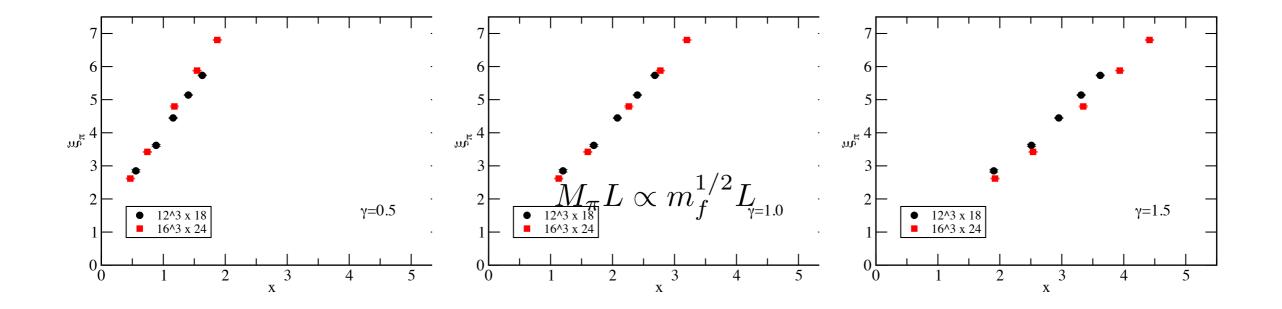
$$M_H \propto m_f^{\frac{1}{1+\gamma^*}} \qquad \qquad F_\pi \propto m_f^{\frac{1}{1+\gamma^*}}$$

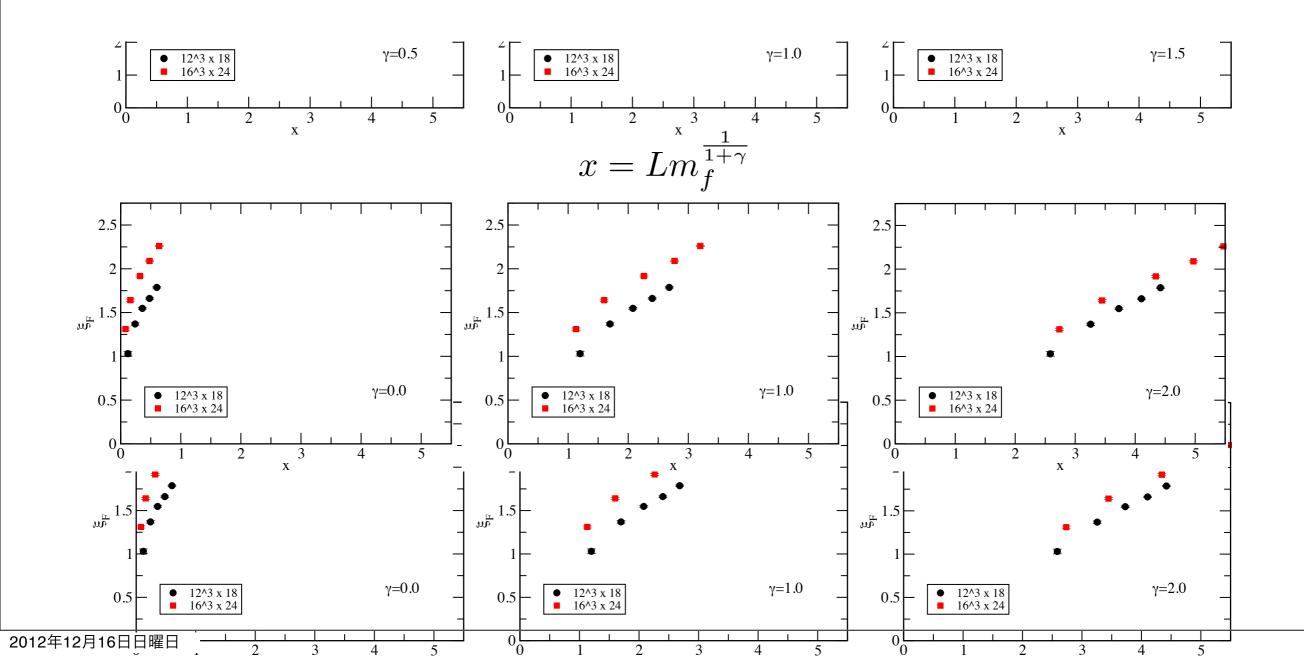
- finite size scaling in a L⁴ box (DeGrand; Del Debbio et al)
 - scaling variable: $x = Lm_f^{rac{1}{1+\gamma^*}}$

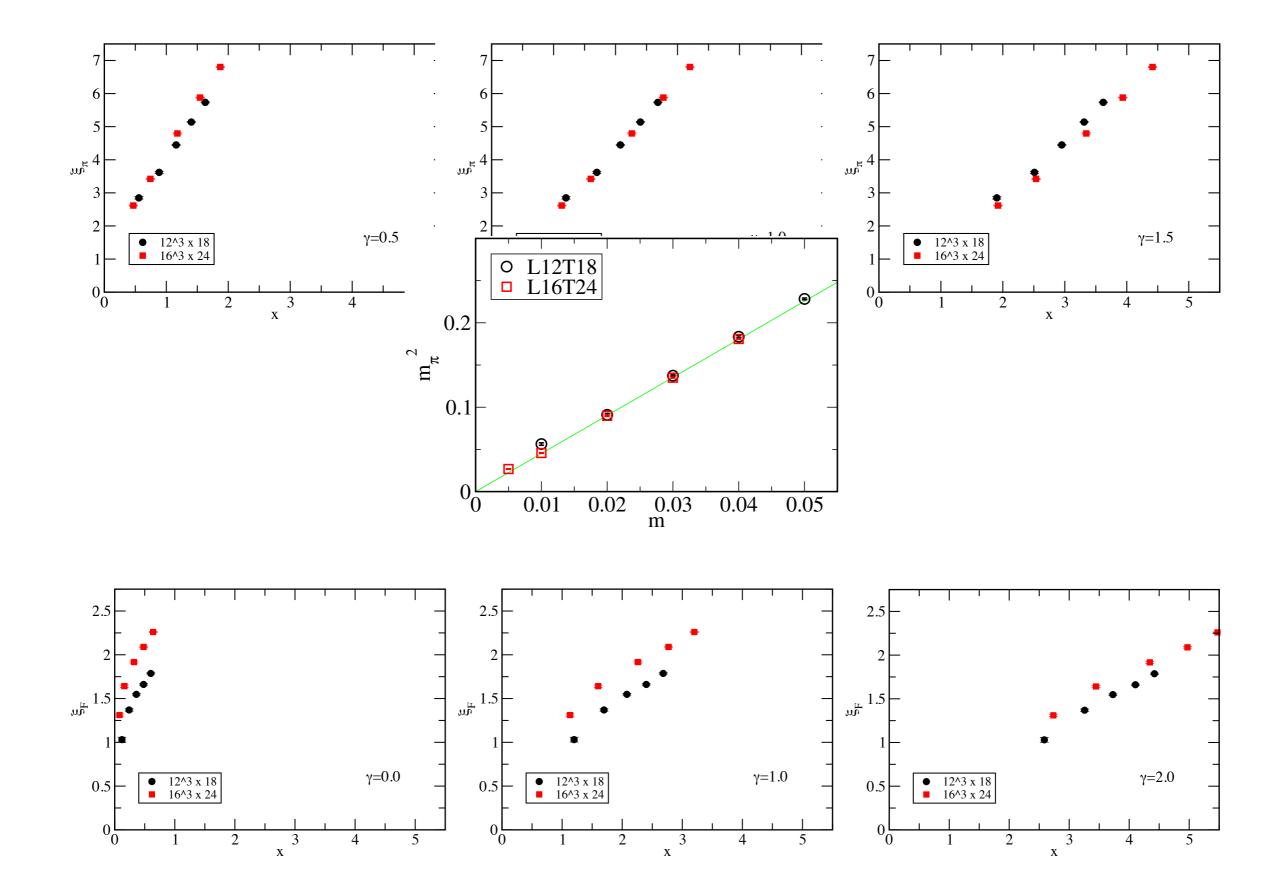
$$L \cdot M_H = f_H(x) \qquad L \cdot F_\pi = f_F(x)$$



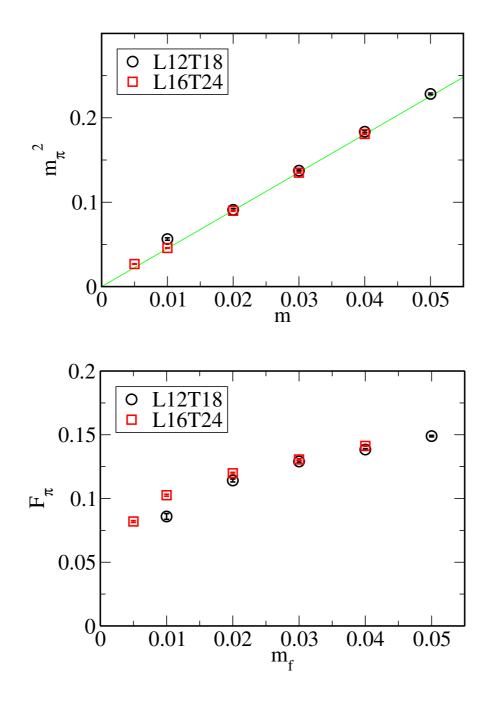




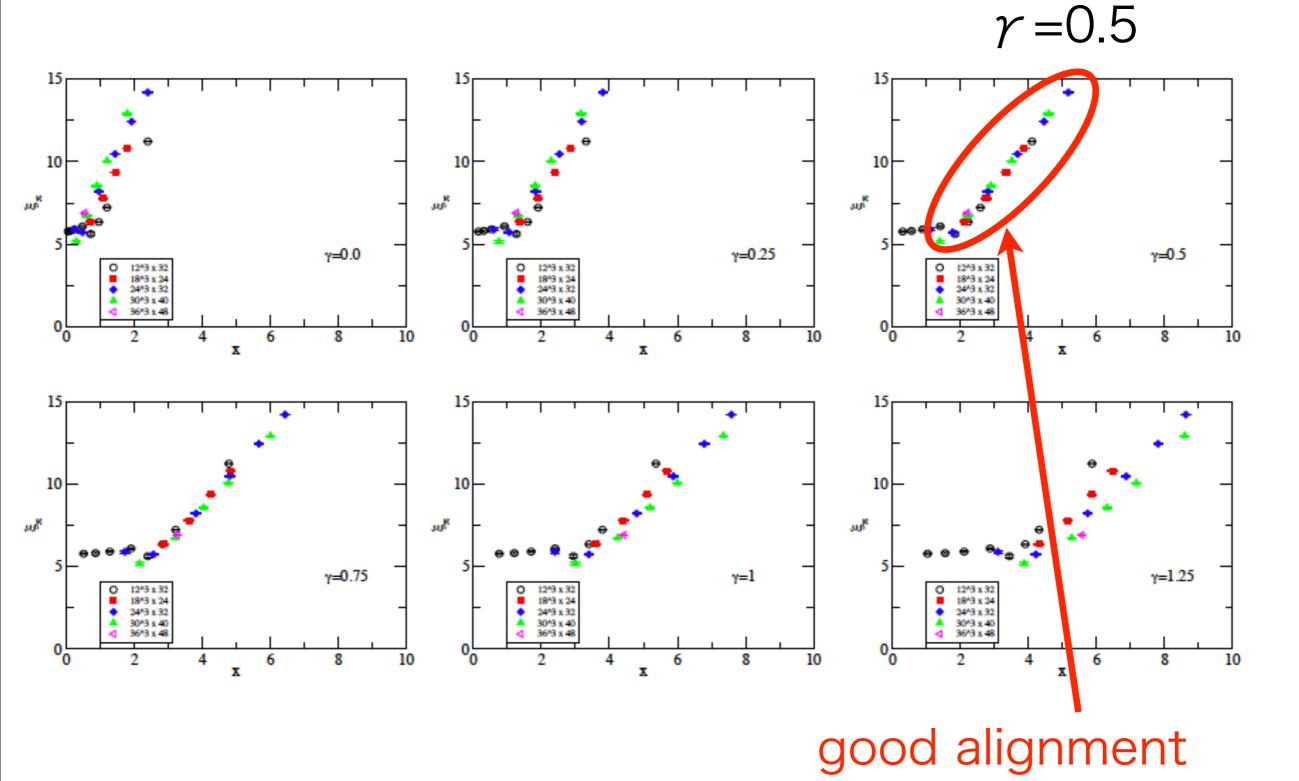




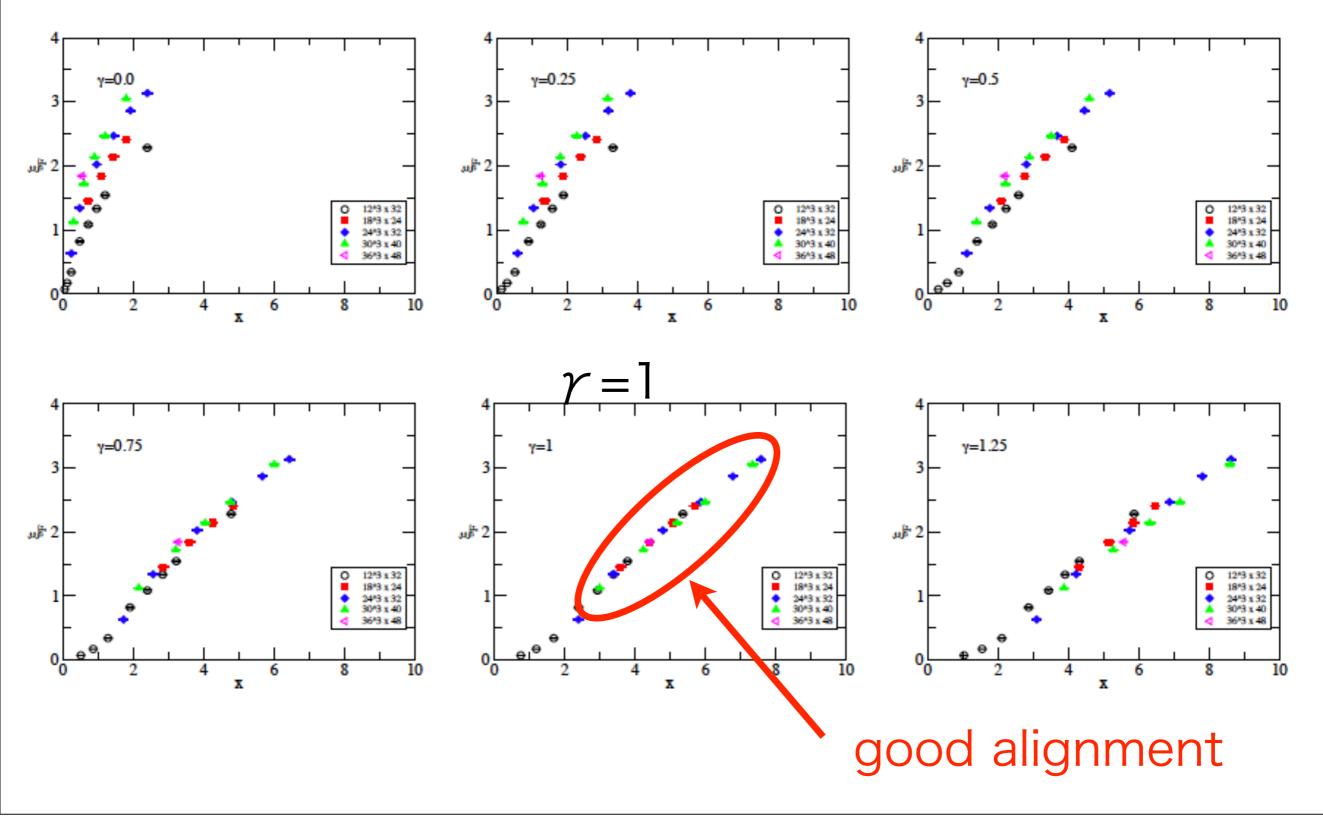
$N_f=4$ see if data align at some γ

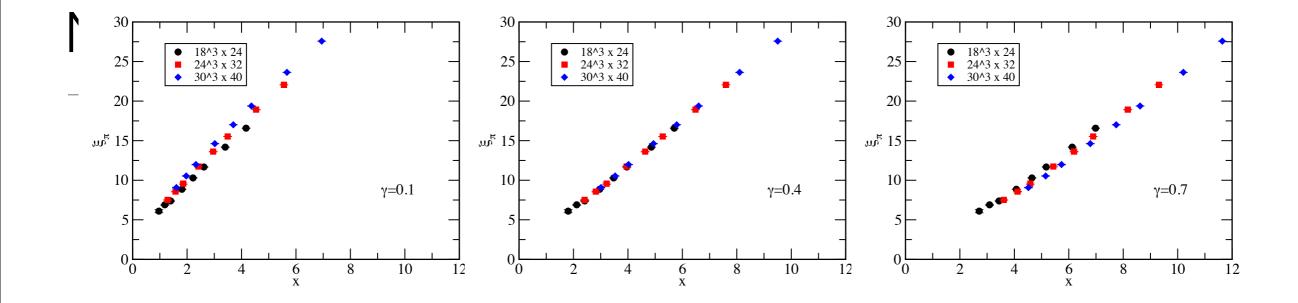


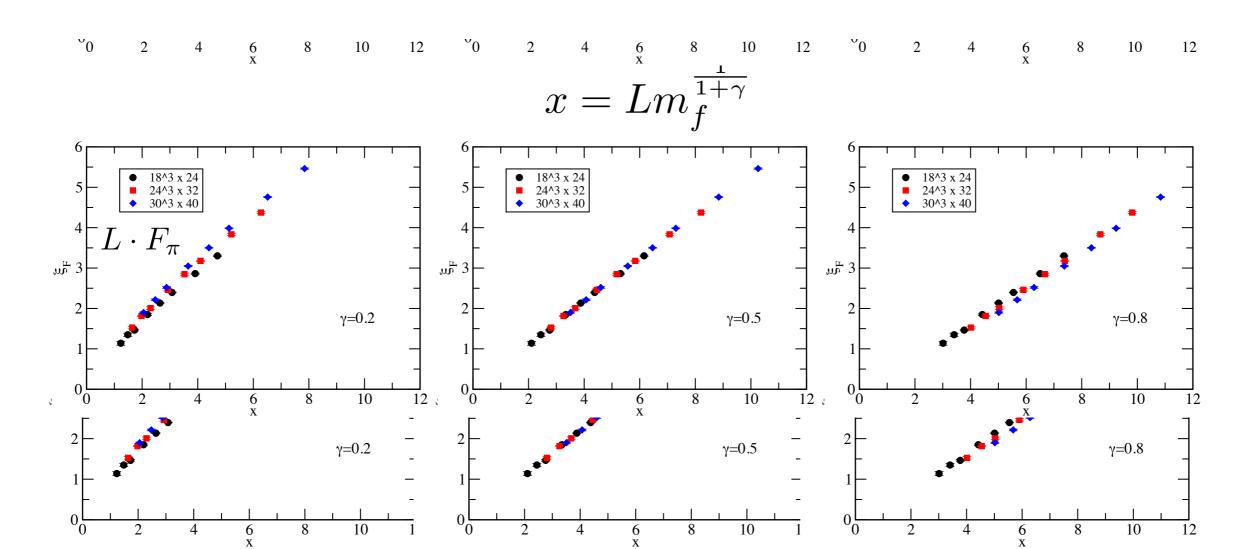
$N_f=8$ see if data align at some γ : M_{π}

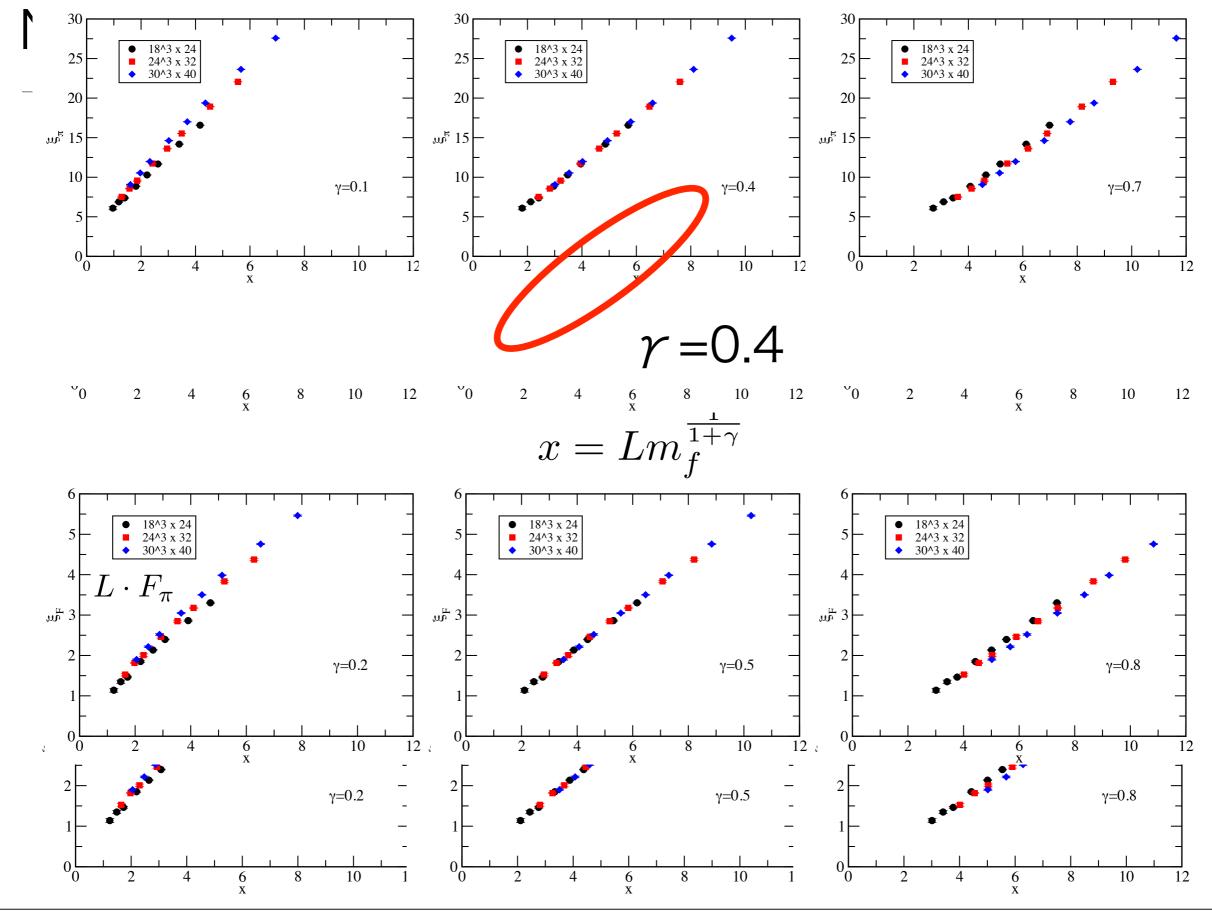


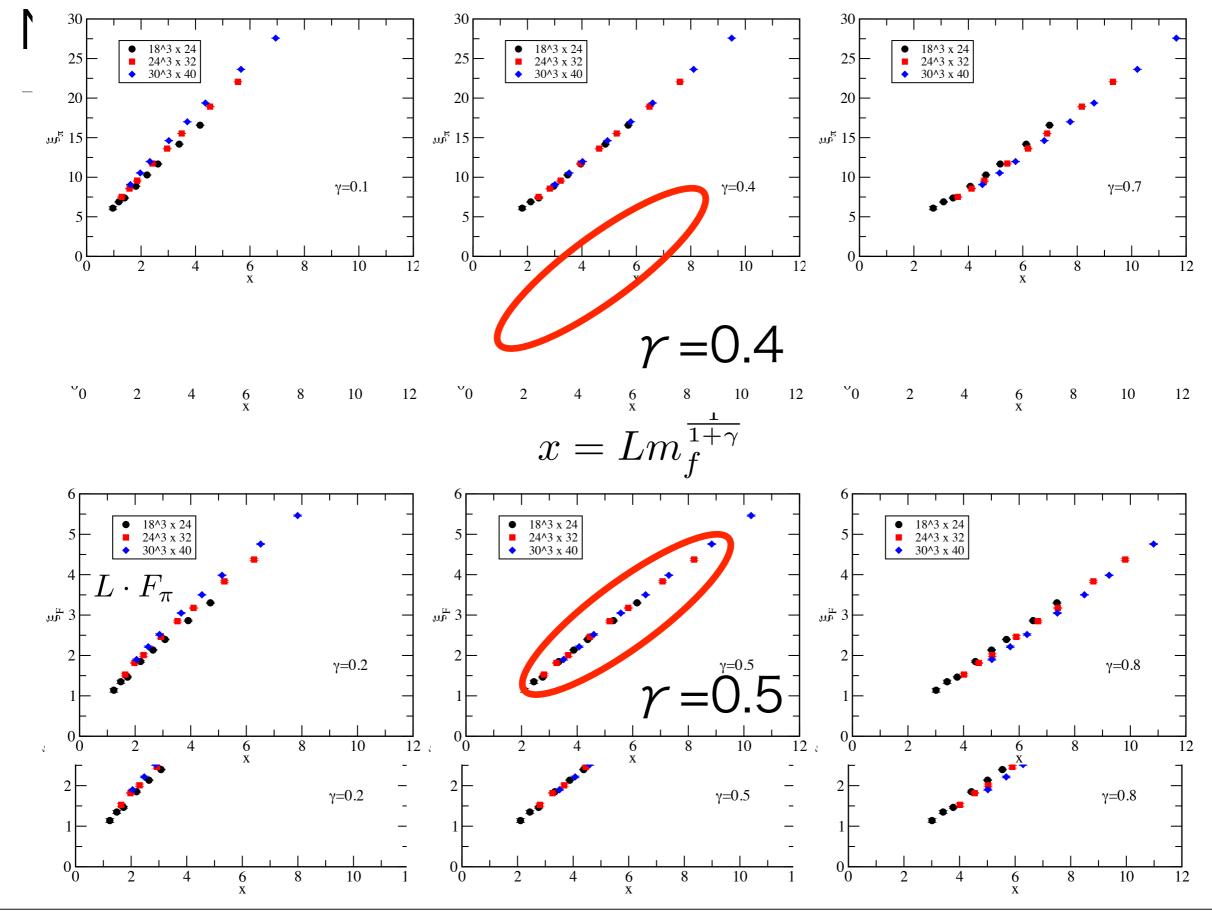
$N_f=8$ see if data align at some γ : F_{π}









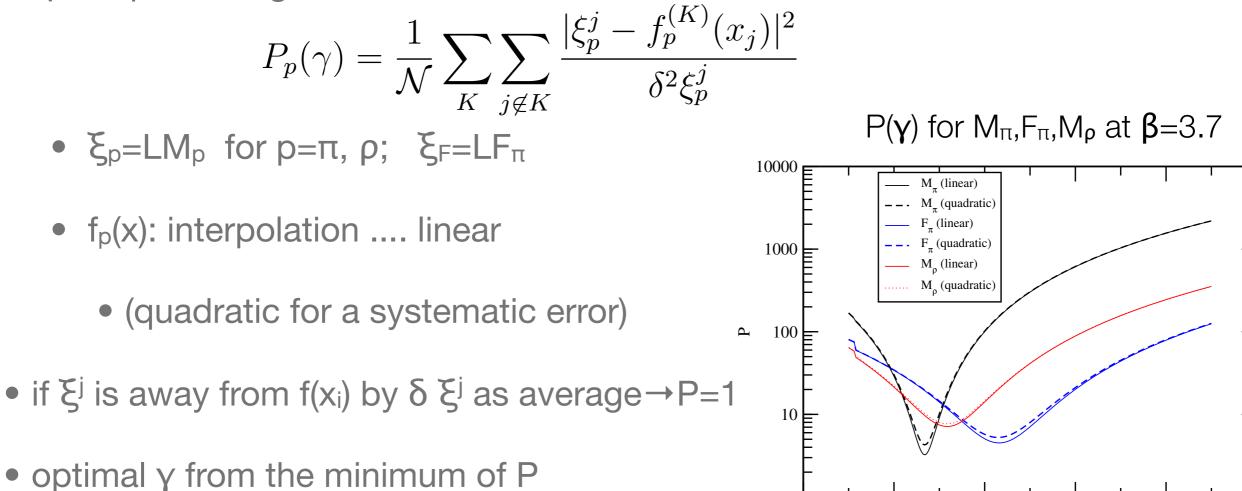


• γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)
- if ξ^j is away from f(x_i) by $\delta \xi^j$ as average \rightarrow P=1
- \bullet optimal γ from the minimum of P
- similar definition of the measure: DeGrand, Giedt & Weinberg

• γ of optimal alignment will minimize:



0.4

0.5

0.6

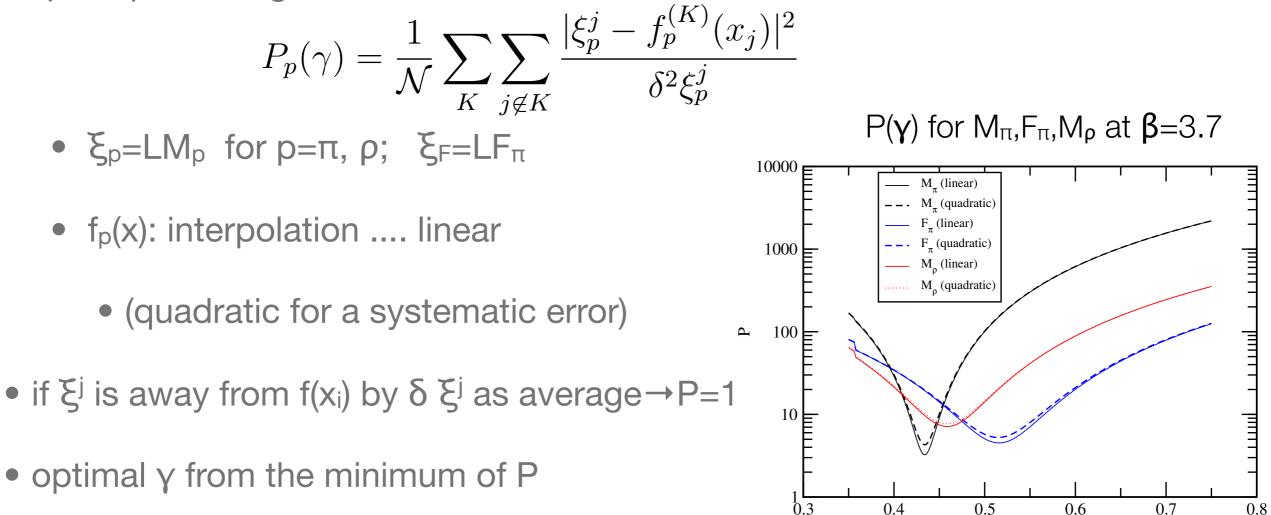
γ

0.7

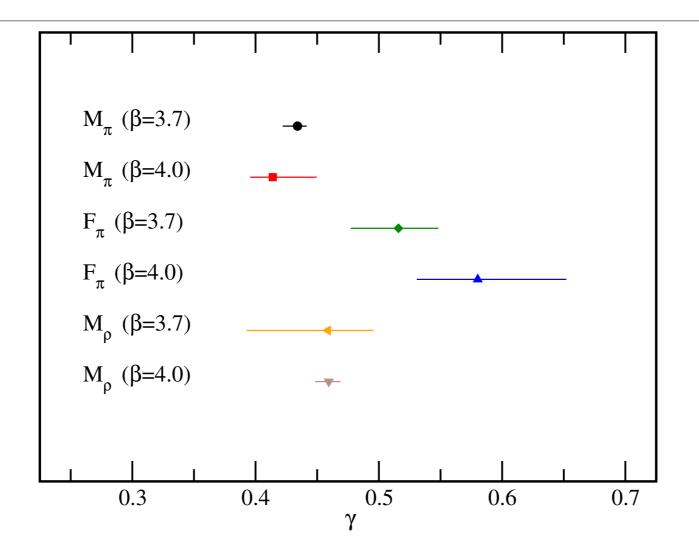
0.8

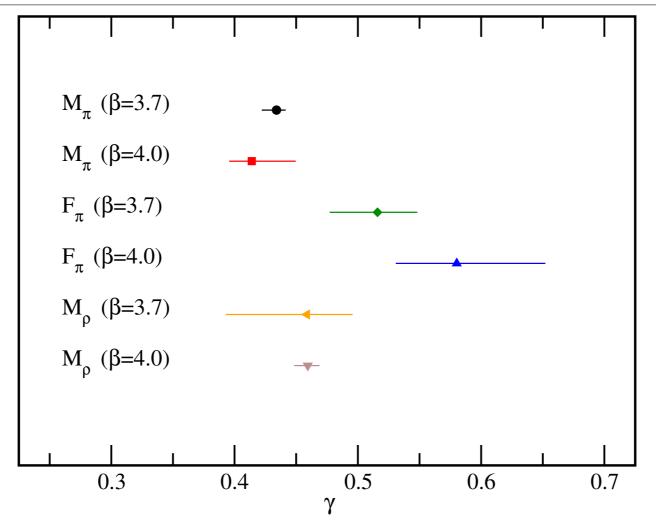
• similar definition of the measure: DeGrand, Giedt & Weinberg

• γ of optimal alignment will minimize:

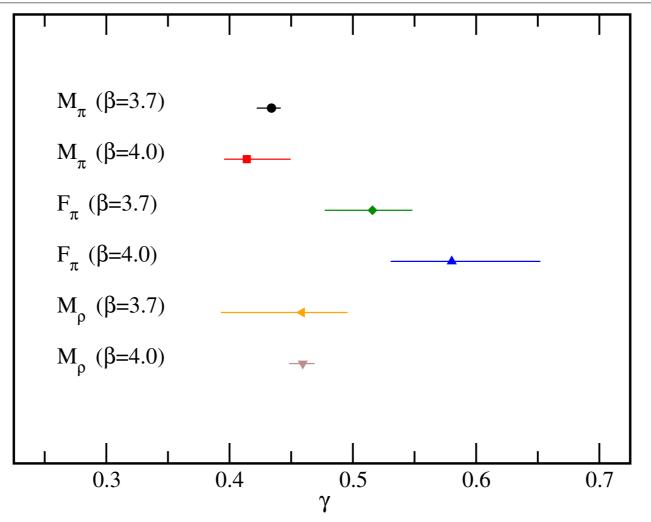


- similar definition of the measure: DeGrand, Giedt & Weinberg
- systematic error due to small L, large m estimated by examining the x and L range dependence



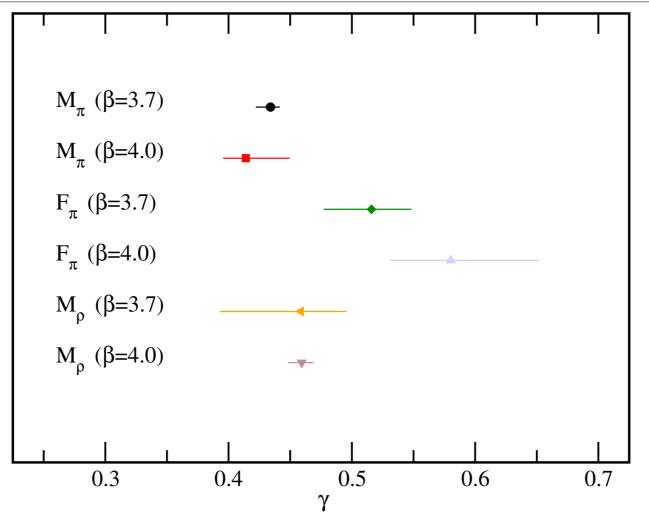


• γ : consistent with 2 σ level except for F_{π} at β =4.0



• γ : consistent with 2 σ level except for F_{π} at β =4.0

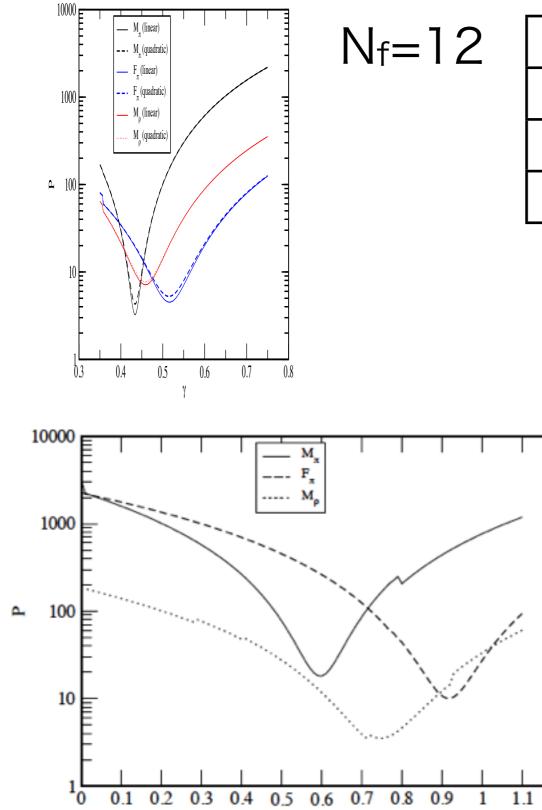
• remember: F_{π} at β =4.0 speculated to be out of the scaling region



• γ : consistent with 2 σ level except for F_{π} at β =4.0

- remember: F_{π} at β =4.0 speculated to be out of the scaling region
- universal low energy behavior: good with 0.4< $\gamma \times < 0.5$

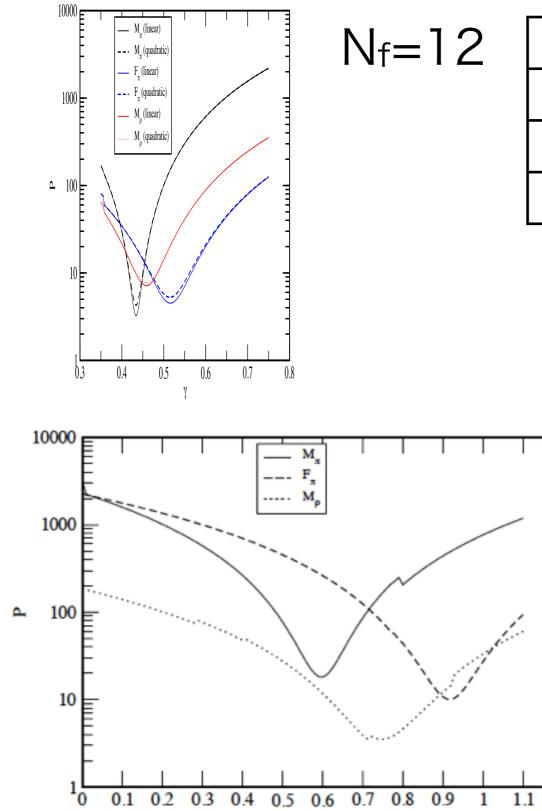
 $P(\gamma)$ analysis for N_f=8



quantity	γ
Mπ	0.434(4)
Fπ	0.516(12)
М _Р	0.459(8)

	quantity	γ
N _f =8	Mπ	0.593(2)
	Fπ	0.955(4)
	М _Р	0.844(10)

 $P(\gamma)$ analysis for N_f=8



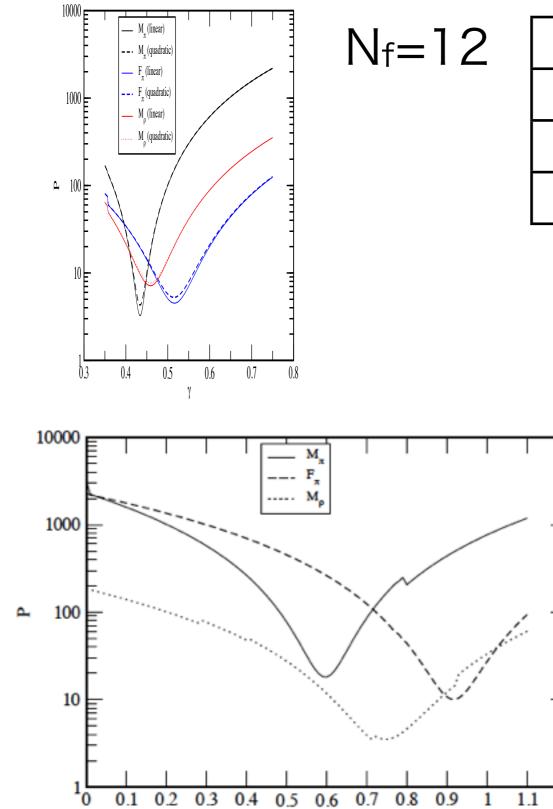
quantity	γ
Mπ	0.434(4)
Fπ	0.516(12)
М _Р	0.459(8)

statistical error only

	quantity	γ
N _f =8	Mπ	0.593(2)
	Fπ	0.955(4)
	М _Р	0.844(10)

Optimal γ obtained for each quantity

 $P(\gamma)$ analysis for N_f=8

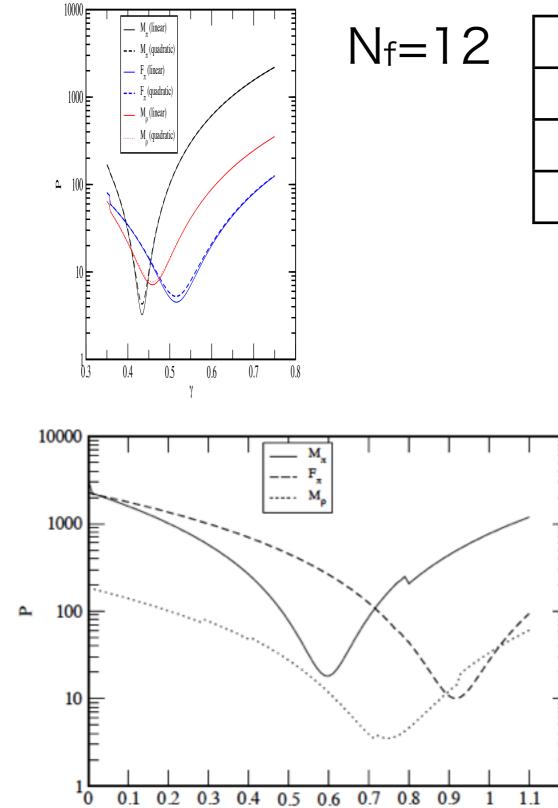


quantity	γ
Μπ	0.434(4)
Fπ	0.516(12)
М _р	0.459(8)

	quantity	γ
N _f =8	Mπ	0.593(2)
	Fπ	0.955(4)
	М _Р	0.844(10)

- Optimal γ obtained for each quantity
- γ scattered \rightarrow no exact conformality

 $P(\gamma)$ analysis for N_f=8

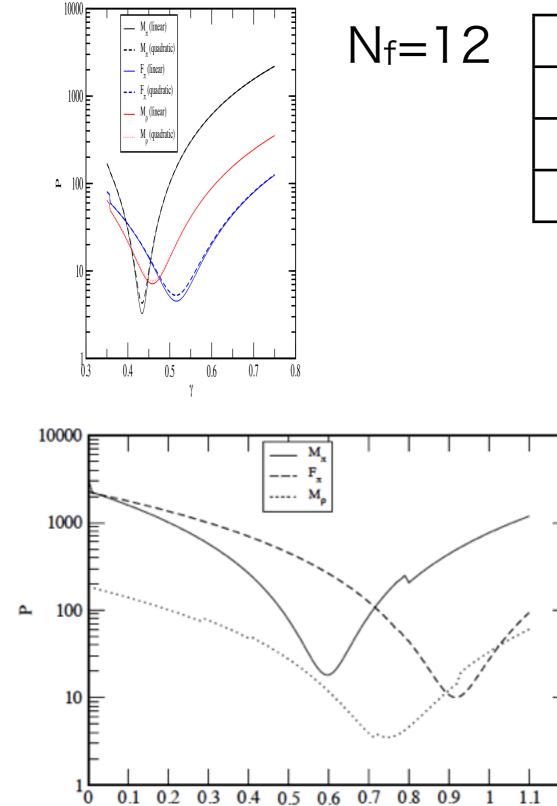


quantity	γ
Mπ	0.434(4)
Fπ	0.516(12)
М _Р	0.459(8)

	quantity	γ
N _f =8	Mπ	0.593(2)
	Fπ	0.955(4)
	М _Р	0.844(10)

- \bullet Optimal γ obtained for each quantity
- γ scattered \rightarrow no exact conformality
- scaling→remnant conformality

 $P(\gamma)$ analysis for N_f=8

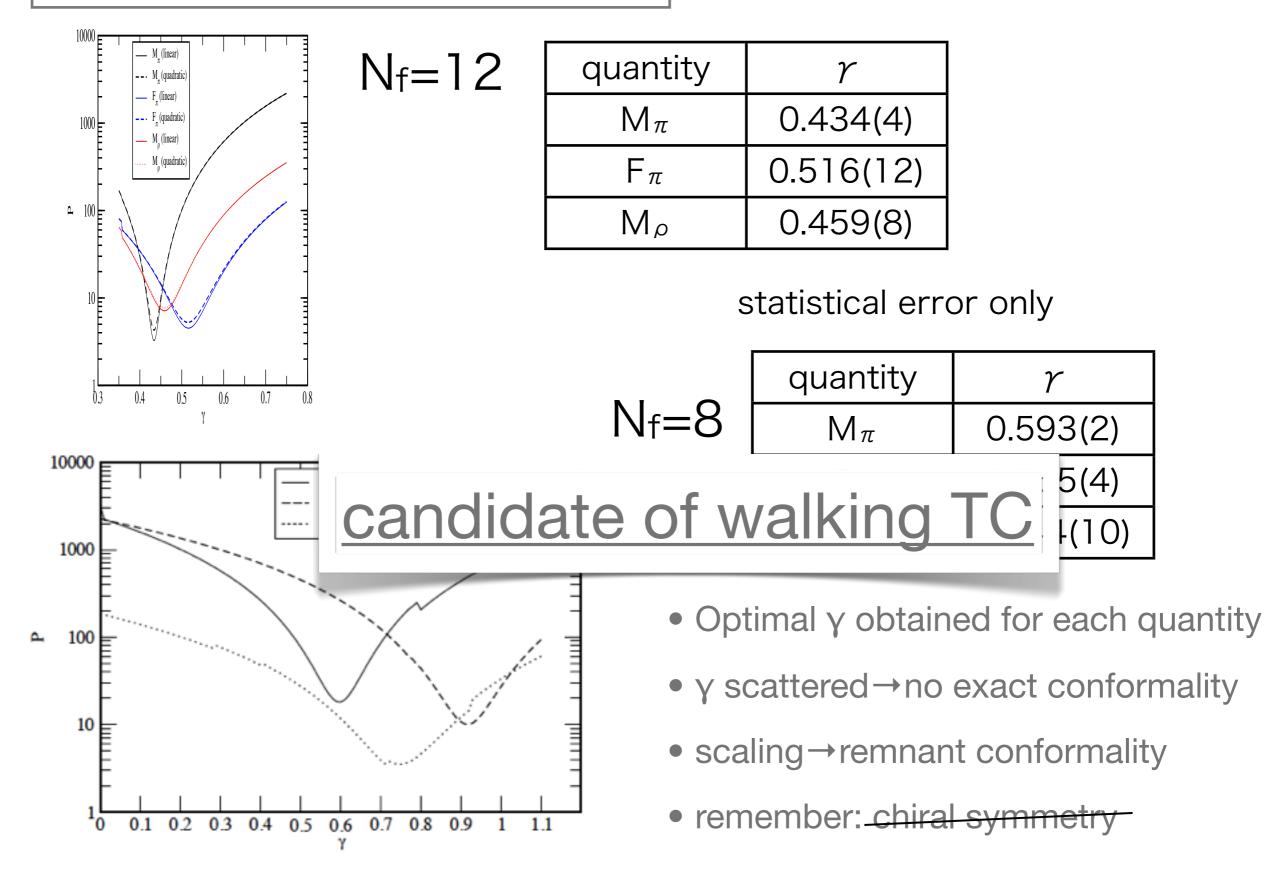


quantity	γ
Mπ	0.434(4)
Fπ	0.516(12)
М _Р	0.459(8)

	quantity	γ
N _f =8	Mπ	0.593(2)
	Fπ	0.955(4)
	М _Р	0.844(10)

- \bullet Optimal γ obtained for each quantity
- γ scattered \rightarrow no exact conformality
- scaling→remnant conformality
- remember: chiral symmetry

 $P(\gamma)$ analysis for N_f=8



0++

spectrum

[preliminary]

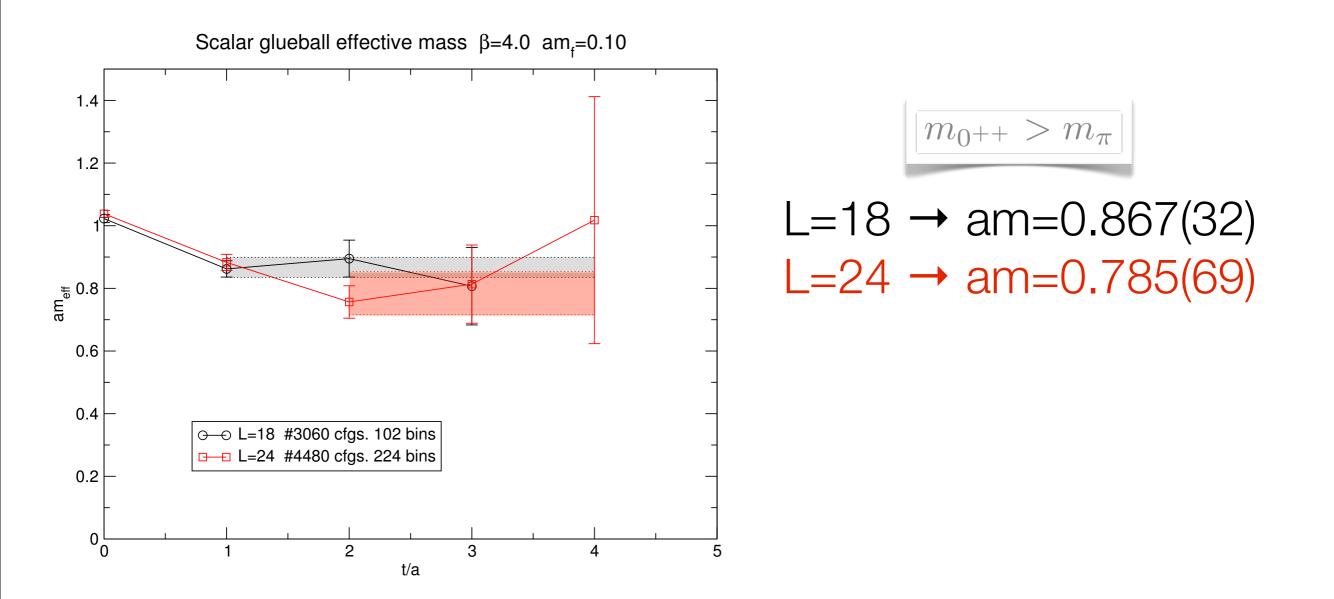
motivation

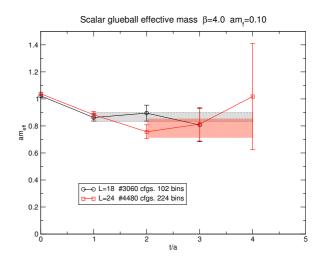
- adding another quantity to the scaling analysis
- see if light 0++ state (→ Higgs in WTC) emerges

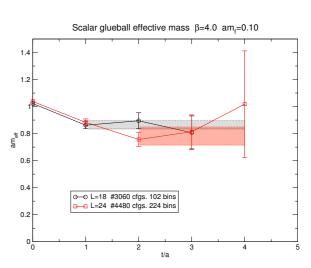
• noisy, thus, difficult quantity in QCD

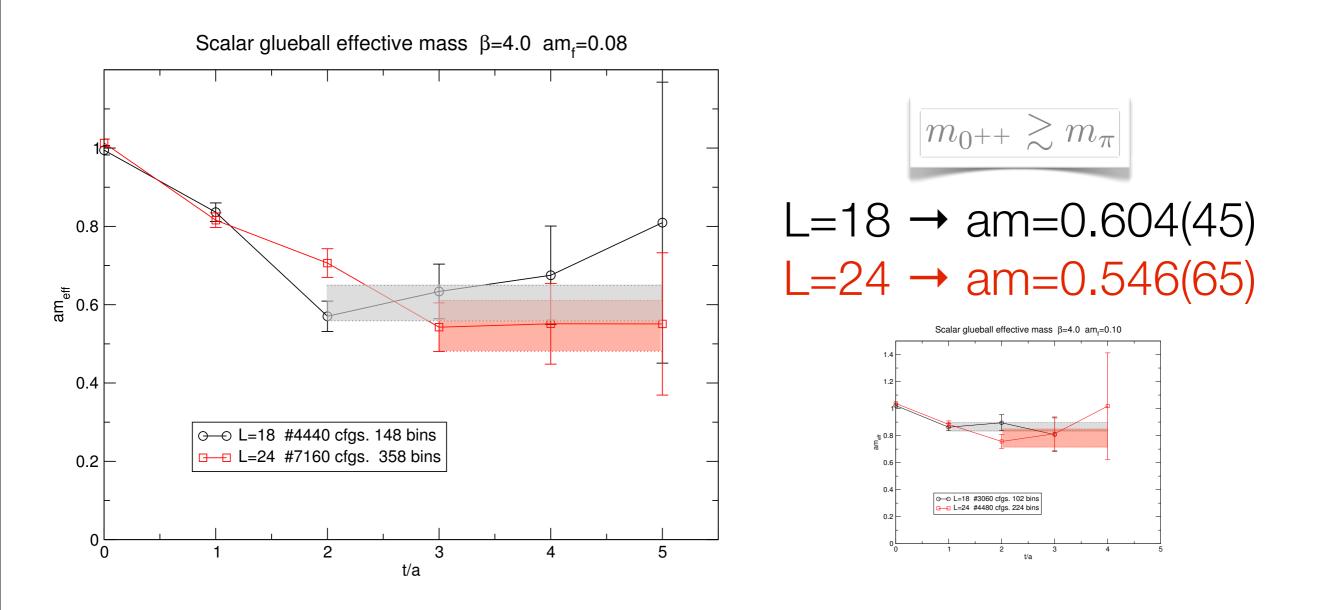
method

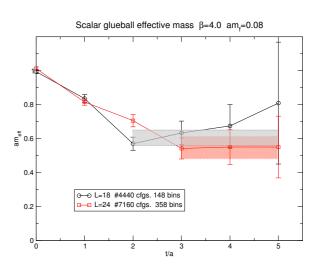
- 0++ glueball
 - variational method with many ops. (e.g. E. Gregory et al arXiv:1208.1858)
- flavor singlet scalar from fermion bilinear
 - stochastic estimator with 64 random vectors
- high statistics: a few 1000 ~14000 configurations

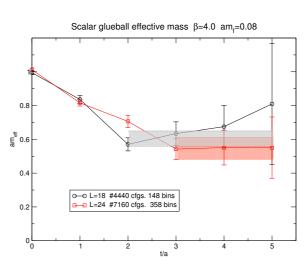


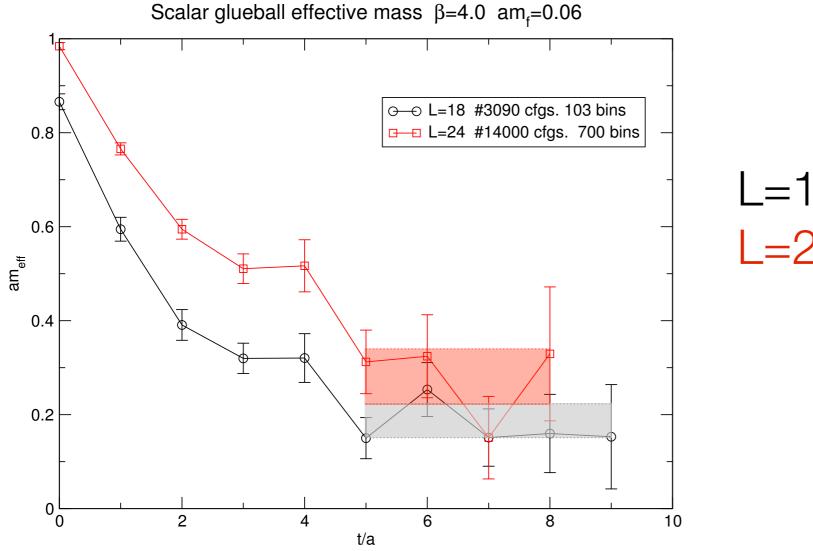


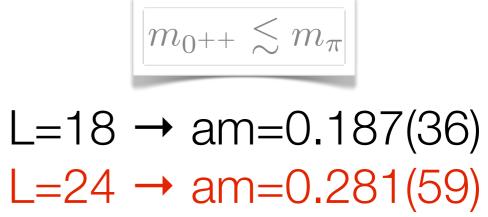


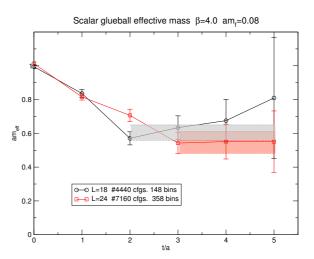


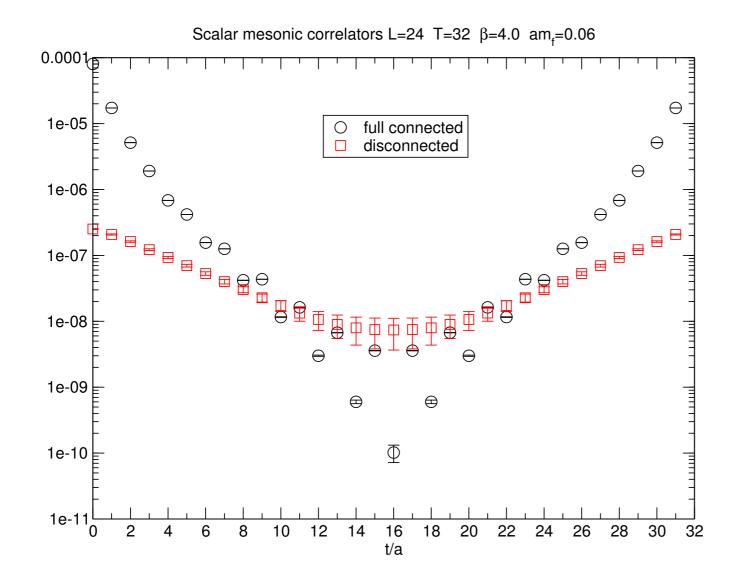


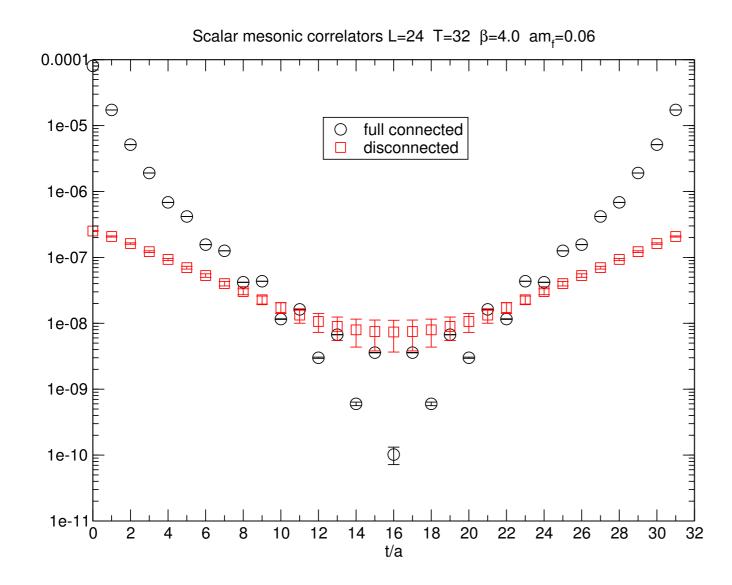




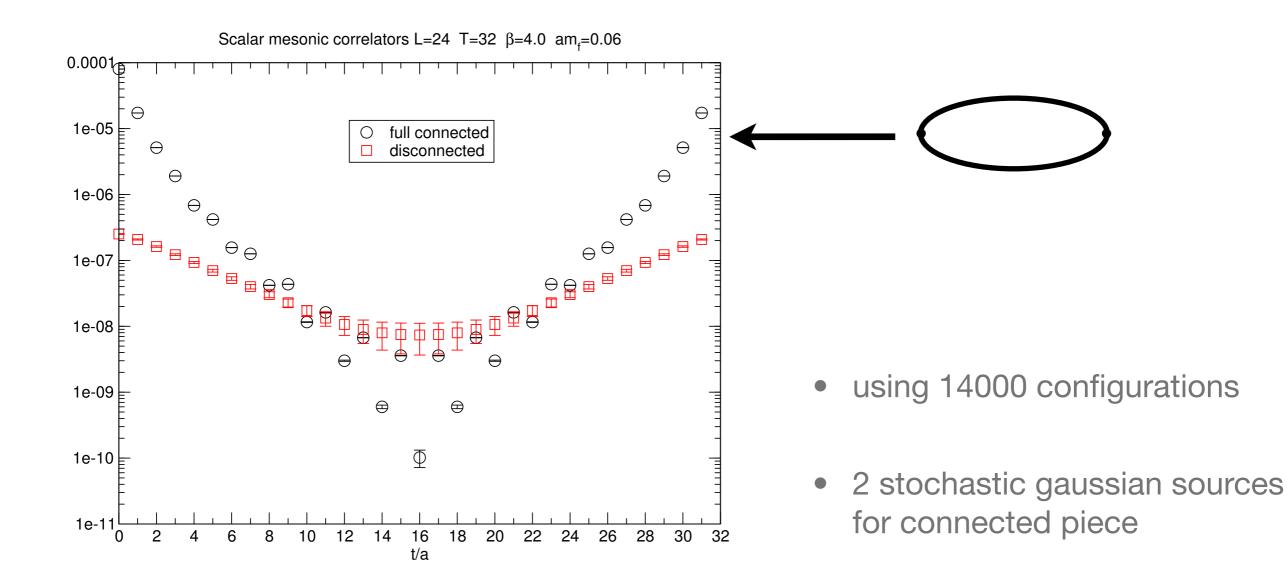


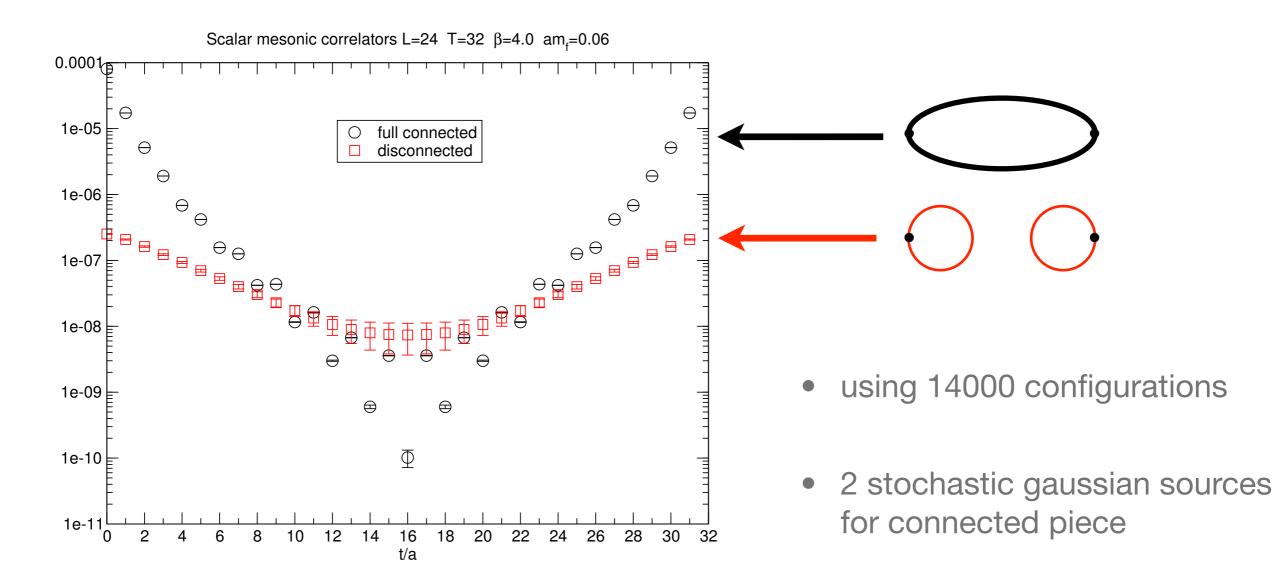




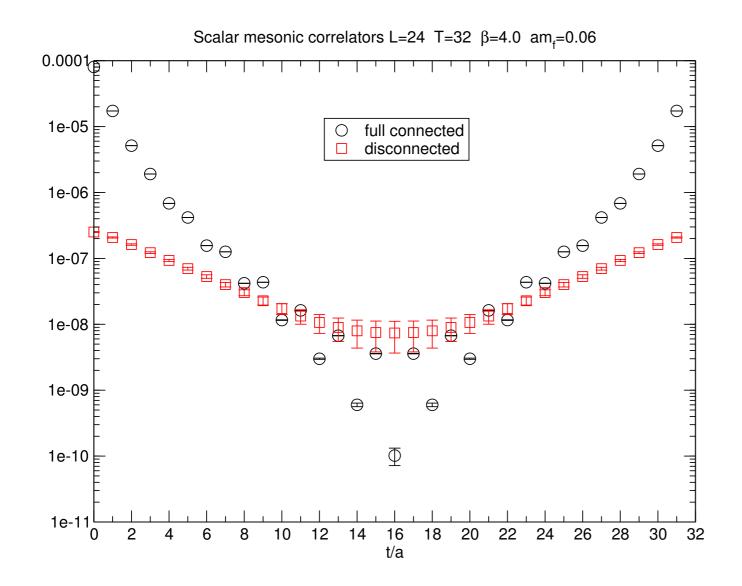


• using 14000 configurations

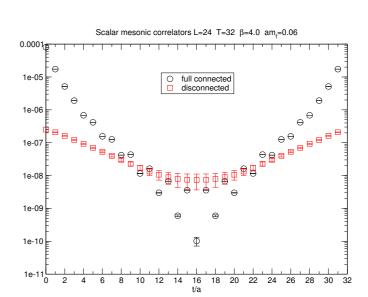


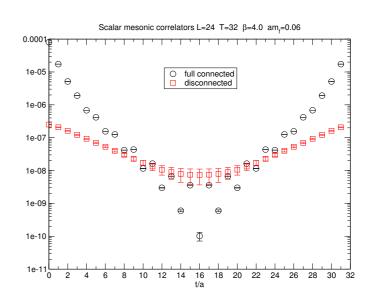


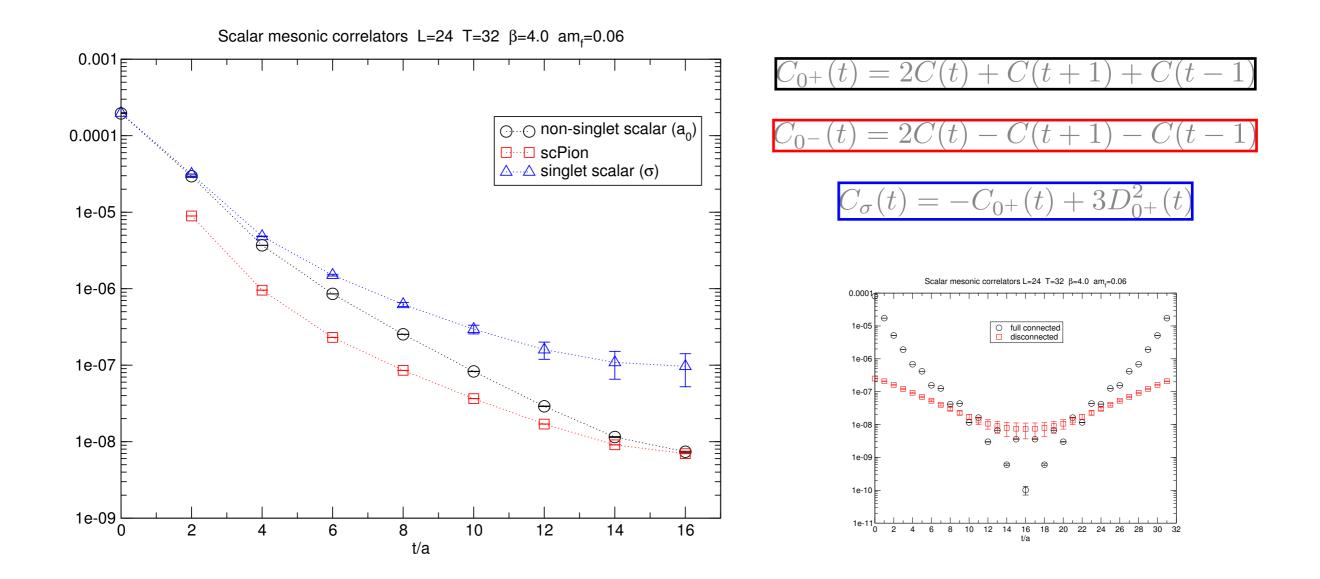
• 64 stochastic gaussian sources for disconnected piece

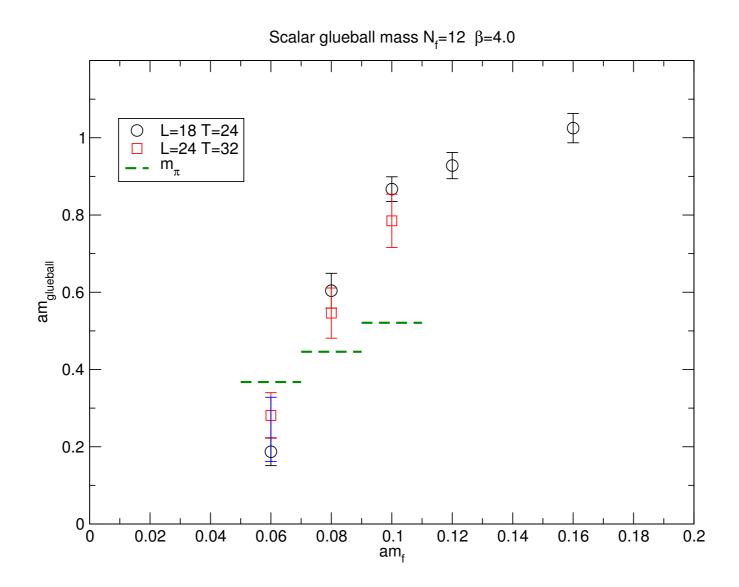


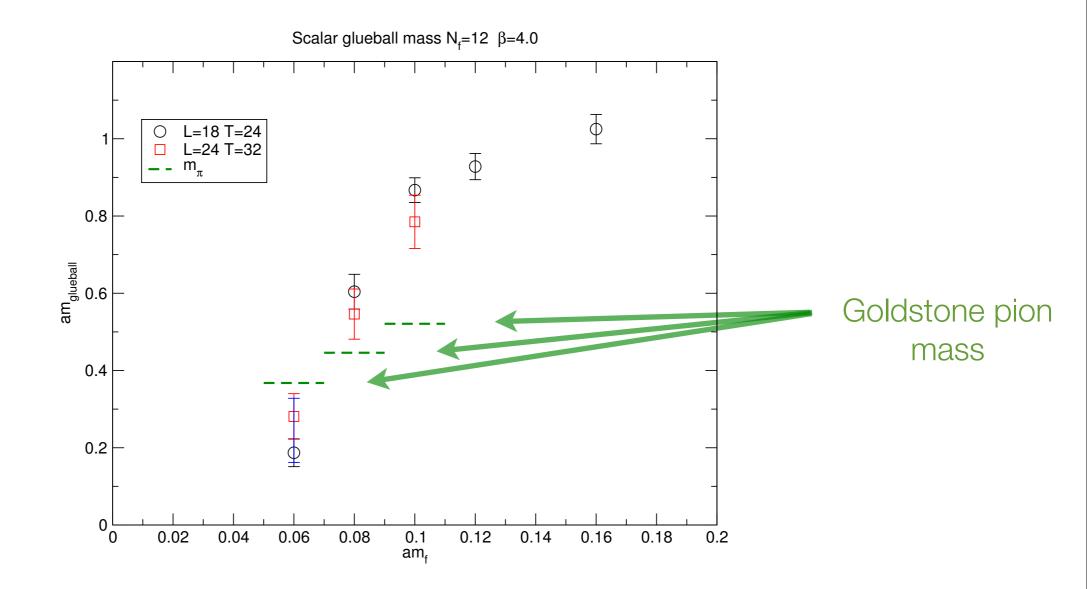
- using 14000 configurations
- 2 stochastic gaussian sources for connected piece
- 64 stochastic gaussian sources for disconnected piece

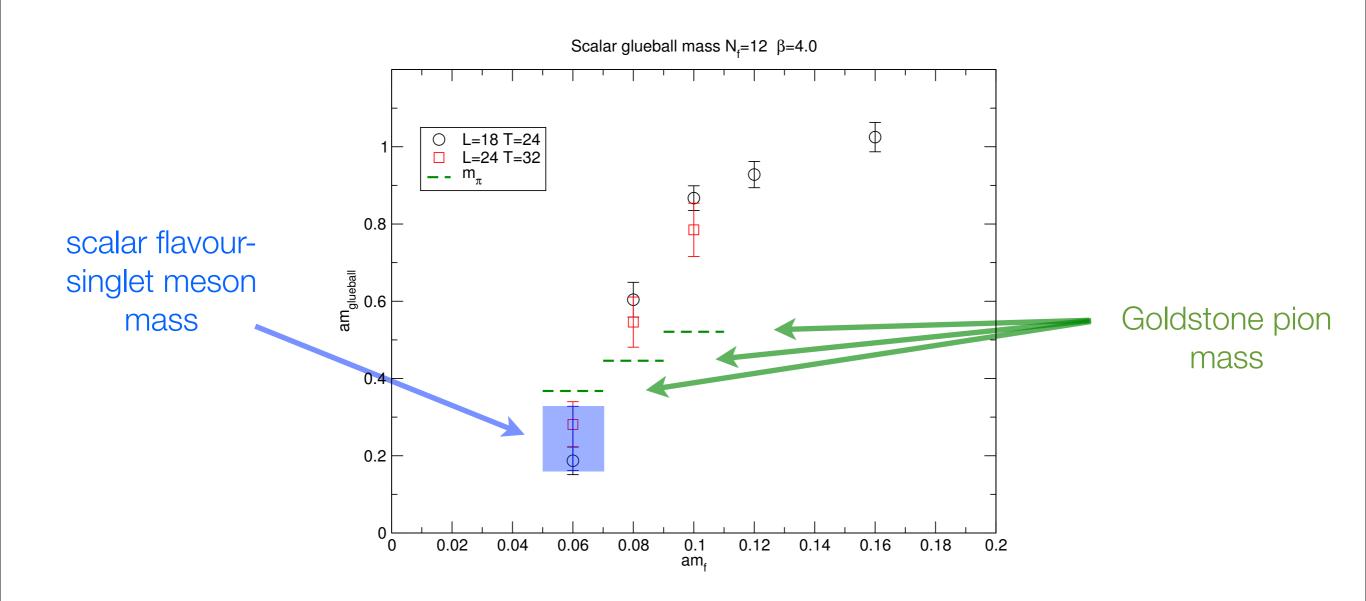


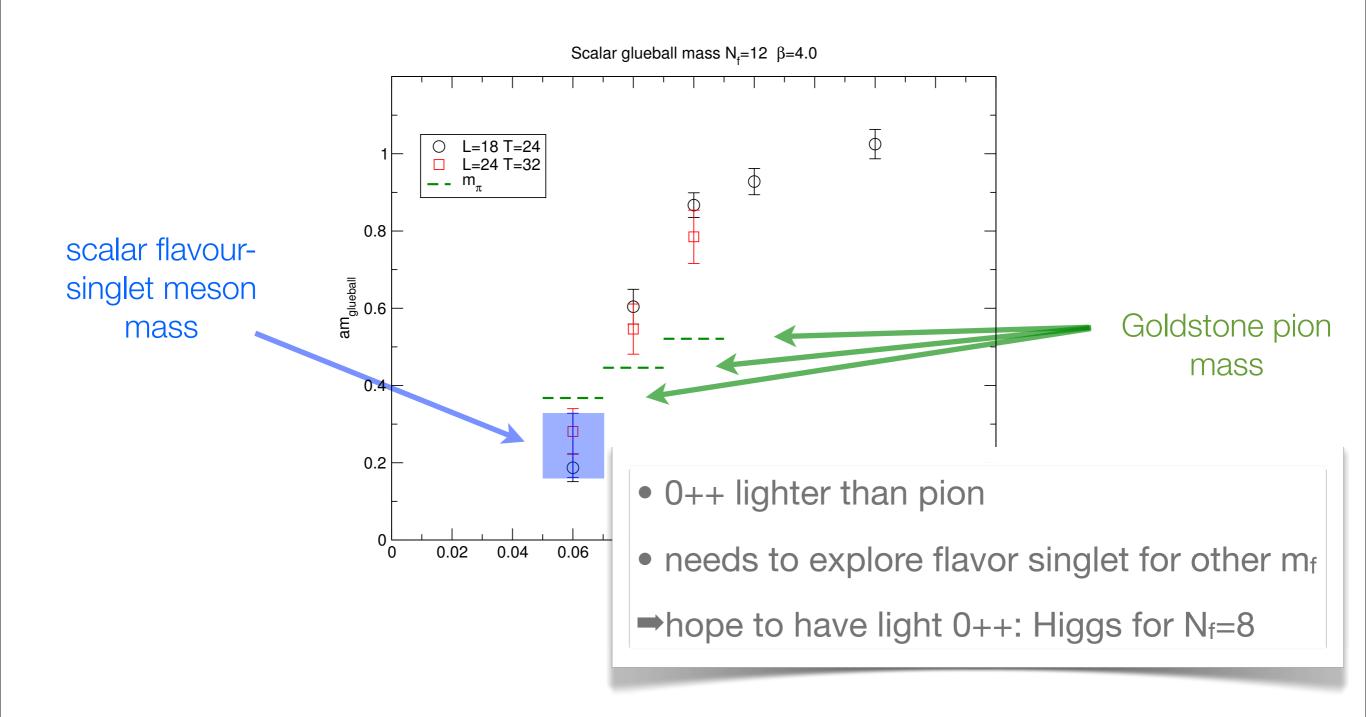












Summary and Outlook

- SU(3) gauge theory + N_f fundamental fermions
- N_f=12 likely conformal
- N_f=8 candidate of WTC
- existence of light 0++ is promising!
- $N_f=12$, 0_{++} be continued
- N_f=8 large scale simulation
 - detailed chiral analysis for F, m_{Had}, m₀⁺⁺
 - anomalous dimension γ (method that does not assume conformality)
 - S parameter...

Thank you for your attention