
Common code system for
 the lattice QCD simulations	

Shinji MOTOKI (KEK, A04 team)

for
Bridge++ Code development Project

Quarks to Universe in Computational Science, Nara, December13-16, 2012	
	

H.Matsufuru gives a talk instead, with a little update	

S. Aoki, T. Aoyama, G. Cossu, T. Doi, S. Hashimoto,
N. Ishii, K-I. Ishikawa, K. Kanaya, T. Kaneko,

Y. Kuramashi, H. Matsufuru, S. Motoki, Y. Namekawa,
H. Nemura, J. Noaki, K. Ogawa, H. Saito, S. Sasaki,

Y. Taniguchi, S. Ueda, N. Ukita, T. Yoshie.

Also advised by H.Tadano, A.Imakura,
Seminars by M.Sato and A.Nakamura

	

MEMBERS
 	

Programmers, reviewers and users are wanted.
Any interested people are welcome anytime!	

Grant-in-Aid for Scientific Research on Innovative Areas
“Research on the Emergence of Hierarchical Structure of Matter by Bridging
 Particle, Nuclear and Astrophysics in Computational Science”
 The A04 team
 “Interdisciplinary algorithms and computer simulations”
 http://bridge.kek.jp/A04/ (H. Matsufuru's talk)

HPCI Strategic Program Field 5
“The origin of matter and the universe”
 http://www.jicfus.jp

– So far 60 meetings held every 1-2 weeks
– Advices given by experts in computer science and applied mathematics	

SUPPORTED BY
	

● Portability: running on various environment, from notebook
PC to supercomputers

● High performance: fully making use of wide range of
architecture, with state of the art techniques

● Easy to understand even for beginners

● Easy to extend to test new ideas
	

DEVELOPMENT POLICY	

●　Research environment may changes
 Collaboration members frequently come and go.
 – who maintains the code?
 – communication problem might occur.
 Machine architecture may change.
 – have to rewrite a new code for updated machines?

●　Demands for “standard”
 Users should concentrate on their physics projects
 Generated data can be shared by different groups.
 Common language on the calculations is convenient.

●　Why not using existing codes?
 E.g. Chroma and CPS++ are widely used in the community.
 We want a code completely under control of ourselves from foundation
 – Quick response to user’s requests
 --Detailed documentation and consulting service
 – Accumulating experiences of the development is important. to keep technology	

WHY COMMON CODE?	

Our aim:
well-organized portable code with a good performance, allowing beginners to carry
out “professional simulations”

C++ language:
Design by the object oriented programming
Stick to the standard libraries for portability
Parallelized with MPI

Documentation
Doxygen is helpful: comments embedded in the code
Detailed manual in English/Japanese

Covering all basic calculations in Lattice QCD:
Gauge configuration generation + measurements
Commonly used lattice fermions
ILDG data format
Maximum flexibility in simulation parameters	

PROFILE	

Ver.1.0 public release 24 July 2012

● Gauge action: Plquette, Rectangular

● Fermion action: Wilson, Clover, staggered, overlap, domain-wall

● Link smearing: APE or HYP x stout (+ projection)

● Linear solvers:　CG,BiCGStab, GMRES, etc. + shift solver(CG)

● Eigen solvers: Implicitly restarted Lanczos (for Hermitan matrix)

● HMC: multi-time step, Hasenbusch, Omelyan integrator, Rational HMC

● Gauge fixing: (Coulomb, Landau)

● Schrodinger functional boundaries, isospin chemical potential

● meson/baryon correlators (Dirac/chiral spinor representations)

● Wilson loop, Polyakv loop, etc.

● ILDG format is supported in configuration data I/O

● Now in progress: multi-thread (openMP or pthread ?), GPU (OpenCL)

 	

WHAT HAVE BEEN IMPLEMENTED	

● Example: solver and fermion operator
	

DESIGN	

Solver
solve()

Solver_CG
solve()

Solver_BiCGStab
solve()

Fopr
mult()

Fopr_Wilson
mult()

Fopr_overlap
mult()

Virtual base class defines
solver interface	

Inherit class
implements each
practical algorithm	

Virtual base class
defines fermion
operator interface	

Inherit class
implement each
fermion operator	

Solver does not distinguish which fermion operators:	
Fopr (base class) defines interface (virtual method)	

Class diagram: relation between classes	

● Example of comparison to literature
 Reference: BMW Colab. JHEP 1108(2011) 148
 Nf=2+1, 2 stout-HYP (2HEX), 163x32 lattice	

CONFIRMATION	

BG/Q @KEK, 3% of peak performance, flat MPI for all the cores	

Trac/Subversion: joint development by the version control system
Subversion: version control system of code set

trac: project control system

Organized information using the wiki

	

DEVELOPMENT	

← screen shot (trac)	

↓ repository browser 	

● Source Code
● Release information
● Progress of development
● Manuals / User’s guide
● Confirmation reports
etc.

	

WEB SITE	

http://suchix.kek.jp/bridge/Lattice-code/	
Please access to	

(Japanese only now)	

● First-step guide, implementation note, etc.
● doxygen	

DOCUMENTATION	

Class list	 function of each Classes 	

● Action/Algorithms to be implemented

 - Now Wilson/clover fermons are available in public version

 - Staggered (standard), domain-wall, overlap fermions are almost ready

● Improvement of design

 - General gauge group, fermion representations

● Performance tuning

 - On Hitachi SR, about 5%

 - On IBM Blue Gene/Q, less than 5% --- being improved

 - Shared memory parallelization

 - Framework to use accelerators: next page	

ROAD MAP	

● General framework to use various accelerators
 (GPGPU, Cell B.E., MIC, etc.)

 We employ OpenCL (implemented, now being tuned)
 -- Open Computing Language (OpenCL) is a framework for writing programs that
 execute across heterogeneous platforms consisting of central processing units
 (CPUs), graphics processing units (GPUs), DSPs and other processors. 	

ACCELERATORS	

New lattice QCD code Bridge++ has been developed aiming at:

● Developing research environment
 − to skip unnecessary efforts of coding while getting high performance
 − to remove barriers of communication between researches/beginners
 − to share experiences, ideas and data

● Making use of knowledge of different fields
 − applied mathematics (algorithms)
 − computer science. software design
 One of the goals of this program

 The project is still in the early stage.
 We strongly need your suggestions, contributions, and feedbacks	

SUMMARY	

DEMONSTRATION	

Quarks to Universe in Computational Science, Nara, December13-16, 2012	
	

Thank you for your attention.	

http://suchix.kek.jp/bridge/Lattice-code/	

