Testing SSOR preconditioner for
Domainwall/Overlap normal
fermions

Ken-Ichi Ishikawa (Hiroshima Univ.)

[AO4 & AO01]

A S

Contents

Lattice Chiral fermions and chiral symmetry
Even/Odd site preconditioning

SSOR preconditioning for normal equations
Results

Summary

1. Lattice Chiral fermions and
chiral symmetry

e Lattice Chiral fermions

— Lattice chiral symmetry: extends continuum chiral
symmetry on the lattice

— Avoids additive mass renormalization
— Important phenomenologically and theoretically
* Low energy QCD/finite temp/chiral condensate,...

e Overlap/Domainwall fermions

* Needs huge computational resources

— Overlap/Domainwall type >> Wilson type >
Staggered type

1. Lattice Chiral fermions and chiral

symmetry
* Needs huge computational resources

— Overlap/Domainwall type >> Wilson type > Staggered
type
— This is due to maintain the lattice chiral symmetry or

to maintain accuracy of signum function of
Wilson/Dirac operator

— Overlap operator inversion solver

* |n this talk

— Testing solver improvement for

 Domainwall fermion inversion (as a 5-D effective form of
Overlap fermions)

* On a small lattice

1. Lattice Chiral fermions and chiral symmetry
* Linear equations for Chiral fermions
— Overlap operator

1 .
Dy, = E[(:H‘ m;)+@-m;)7/55|gn(7/5D4va)]

: 2
— GW-relation 7sDoy + Doy 75 = —[mf7/5 + Dy 75 Doy
14+m,
— Linear equation Doy X=b— x=(Dg,)b
e 5-Dimensional effective form

— By introducing a signum function approximation(matrix

function) .,
b5D — Qb’ D5DEff Xsp = b5D —> Xgp = (DSDEff) b5D

— X =PXgp = (Dov)_lb

— at a desired accuracy (sign-func).

1. Lattice Chiral fermions and chiral symmetry

 The form of the 5-Dimensional effective operator

— Overlap fermion solver can be converted into 5-Dimensional effective
form (at a accuracy for signmum function)

Dyper o (0,1;M,8) = D" X, (F;8) Dy 1 (NsM) Y, (13 8)5%° (n;m)
Y

— n, m: 4-D lattice index, r, s : 5th index, a, b : color, aBy: spin

— There are several types for the matrixes X and Y. Based on the
approximation type of the signum function.

— Dypw : 4-D Wilson/Dirac matrix with a negative bare mass

2 | 4 (1—7#)a_ U, (n)s(n+ f;m)
Daowap (i) = (4= M5 (i) =3~ "
#el +(1+7ﬂ)a;ﬂuy (n—u) 6(n—;m)

— Dgpos has sparse matrix structure on 4D lattice site index. Easy to
implement.

* improve and speed up to solve Dsoere Xs0 = Psp

2012/12/13 QUCS 2012 (2012/12/13-16) 6

1. Lattice Chiral fermions and chiral symmetry

* Properties of the 5-D effective coefficient matrix
Dyper o (0,7;M,8) = D" X,,.. (F8) Dy (NsM) Y, (15 8)5™° (n;m)
v

— This contains negative real-part eigenvalues. (at least in free cases)

Eigenvalues of free 5D-effective fermion operator on 16° Eigenvalues of free 5D-effective fermion operator on 16"
Continued-Fraction-Shamier type Domainwall-Shamier type

M=1.0, m=0.01, ;=16

15 F

05 F

_0‘5 E

-1.5 F

Continuued fraction approximation Domainwall type approximation
with Shamier kernel with Shamier type
— Linear equation D5DEff X5D — Mg is not suitable for iterative

solvers.
2012/12/13 QUCS 2012 (2012/12/13—16) 7

1. Lattice Chiral fermions and chiral symmetry

D5Deff X=Db is not suitable for any iterative solvers as D5Deff
contains eigenvalues with negative real-part.

e Usually this is solved by normalizing the equatoin:

f i t
35 Deff D5 Deff)X — D5 Deff b
T T
:)5Deff D5Deff)Z =b, X= D5Deff /

* The coefficient matrix is now non-negative and Hermit. We
can solve them with CG iterative algorithm.

* Or

—

 However the convergence is slow as the coefficient matrix is
doubled and could have a large condition number.

* Preconditioning for the normal equation is desired to improve
the convergence property.

2012/12/13 QUCS 2012 (2012/12/13-16) 8

1. Lattice Chiral fermions and chiral symmetry

In this talk, | tried two types of preconditioning for the
Domainwall quark sovler and compared them on a
small lattice.

(1) Even/odd site precidiotioning for .
D5Deff X= b

+ then Normalized
(2) SSOR preconditioner for the nO(maI equaiton:

T T
D5 Deff D5 Deff)X — D5 Deff b

— No-lattice parallelism. Single computer test.
— Type(1) preconditioning has been used in the literature.
— Tyep(2) the direct use of the SSOR for the normal equation is not seen.

Conclusion from my test:

Type(2) is not good at the elapse time level even if the
reduction of the iteration counts of the CG solver is seen.

2. Even/Odd preconditioning + normalize

Preconditioning based on Even/Odd (or Red/Black) site
ordering

— 4D lattice index is colored by mod(nx+ny+nz+nt, 2). D, is Sparse matrix
(w.r.t. 4D lattice site index)

D5 Deff ee D5 Deff eo

D5Deff T D D
5Deff ge 5Deff 0o

— The linear equation D5Deff X =] istransformed to

7o\

D =h,
. _ . 5Deff e
D5 pets e — (1 - (D5 Deff e) 1 Dy petr €0 (Ds Deff 00) ' Dy petr oe) o

b\e = (DS Deff ee)_1 (be o D5 Deff eo (D5 Deff oo)_1 bo) Xy = (DS Deff)_1 (bo — D5 Deff oe Xe)

N

D

— 5Deffee is still ill conditioned (e-values with negative real part). Normal
equation is applied.

(D5Deff o D5Deff e)Xe = D5Deff oo b (1)Even/odd-NRCG

€

3. SSOR preconditioning for Normal

equations
 SSOR Preconditioning by the 4D-site index structure:

C : Diagonal part
AEDSDeffTDSDeff =C+L+U |_g P :
L : Strictly Lower triangular part

U : Strictly Upper triangular part

* SSOR preconditioning by multiplying the inverse of
(1+C™L) and (1+CU)

A=@+c?L)'crAll+CcU)’

SSOR preconditioned matrix

e The inversion of (1+ C‘lL) and (1+ C‘lu) is done by
forward or backward substitution.

3. SSOR preconditioning for Normal equations

T T
D5Deﬁ D5DeffX — D5Deff b

1+ clL)lcl(DSDeﬁ*DSDeﬁUXH CU) y=[1+CL)'C Dy, b

— Ay =c, (B) NRSSOR-CG

A 3 = _ —1
A (1+C 1L) C 1(D5DeﬁTD5Deﬁ x1+C 1U) » | SSOR preconditioned matrix

C= (1+ C_lL)_lc_lDSDeffTb’ X= (1+ CU)_1 Y,

N

A s still non-negative and has a reduced condition number.

* Expected that CG solver for (B) converges faster than original equation.

 However the implementation of the forward and backward solver is

difficult. This is because of the extended hopping structure of

. T
e Here we consider A= D5Deff D5Deff

— Normal site ordering. 1
Diperr = Dowe =K _§1® M

— Domainwall operator. hop

2012/12/13 QUCS 2012 (2012/12/13-16) 12

Hopping structure of Dy,: Doy .

4D lattice site access
pattern of Dy, Doy

Two-hopping
operations (orange and
vellow)

L-type link vars.

L-type access is tensor.

Computational cost is
much larger if we do

not use intermediate
vectors.

SSOR requires hopping
access decomposition. Upper part Lower part

Difficulty of SSOR

* Two hopping operations in DDWFTDDWFV

(47, Y17,)0, (MU, (n+ @v(n + i +7) []] |

L+, ML+ 7, 0, (MU, (n+ 2=V)v(n+ - V)

Q-7 -7 0, (0= @U, (n= v(n-ji+7)

Ll

/

\)TTTC/

L-y)+ 70, (=, (0= a=P)v(n- =)

I

* Tensor summation =>Too many computations.

"
'L

M- 1D 3D 3
M- LM M- iD=

* We must keep intermediate vector site by site as

done usualy for

T T
W= DDWF DDWFV =S = DDWFV’W: DDWF S

Textbook:”Iterative Methods for Sparse Linear Systems”, Y.Saad, 2" ed., 2003.SIAM.

SSOR for Normal equation by Saad (NRSSOR)
* Site access pattern for DDWFTDD\,VF

O = data acccess . v computed O v data access . z data updated

p—y
gy
\—y
)
p—y
)
Ny
)
NS

Iy
p—y
gy
Ay
gy
p—y
gy
p—y
gy
p—y

)
p—y
)
\—y
)
p—y
)
p—y
gy
p—

)) J\) e
N N I N N
) I I

N NS Y N

)) A"\)

N N I N

) £ L))
p—y p—y T p—y p—y

)
¥
—— —O—0— -0 —0—O—
!
[

T
\—y
TN
p—y
TN
p—
)
\—

* Keeping working vector z s.t. z=D_,X holds

2012/12/13

QUCS 2012 (2012/12/13-16) 15

3. SSOR preconditioning for Normal equations by Saad

. Solver algorithm for (d+ CL)x=b

x(:)=0;2(:)=0

for n (4D lattice site, ascending order for L part)

v=0
for ©u=1234

v=(M,, 2)(n)

v=v+ Ly, U,z + 2)+ -7, 0, (-)z(n- 4)

end for

v=h(n)-C*(K"z(n) —%v) <€

x(n)=v <€

D5Deff — DDWF =K _§1® M

1

hop

Global Working vector z

L= DDWFX

Update xatn

Local update vector v

v =b(n) = (C Doy 2)N)

z(n) =z(n)+ Kv
for ©u=1234

2(0-2) =20~)~ (L7, 1, (0 &)V

z(N+ f1) = z(n+[z)—%(1+ y 0. (v

end for

end for

Keep the relation between x and z

2012/12/13

QUCS 2012 (2012/12/13-16)

16

4. Results

 Benchmarking Parameters
— 1273x24,3=5.7 Wilson gauge Quenched one config
— DWEF (Borici) Domainwall,
— DW height M =1.6
— mass m,=0.03
— SSOR over relaxation parameter omega=1.0, 1.5
— Sth length N.=24
—m,= —0.01655

— We compare

* |teration counts, timing, and Flop counts for CG
convergence between

(1) Even/Odd-NRCG and (2) NRSSOR-CG

4. Results
* CG residual history

TrOv(24) Solver Performance Comparison on B=5.7, 12%x24 Reduced Iteration counts
CG iteration counts

0 for NRSSOR-CG

'10 T TrTrTTrTTTTTTTTY T T Lkt [T [T TP TrrTTTTTTTTET [T

1k even/odd->NR->CG Bv %
107 F ——— NRSSOR(@=1)->CG 1 Y 7.
102 B\.——— NRSSOR(0=1.5)->CG ;

NRSSOR actually reduces
the condition number

esidual |b-A x|/|b|
o

R
o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
CG iteratin count

2012/12/13 QUCS 2012 (2012/12/13-16) 18

4. Results

* CG Floating point number operation history

TrOv(24) Solver Performance Comparison on =5.7, 12%x24

Tera Flop counts

. | —— even/odd->NR->CG
107 F — NRSSOR(w=1)->CG
102 A\.—— NRSSOR(0=1.5)>CG

esidual |b-A x|/|b|
=)
~J

R
-
o
my

Total Flop count:
1 NRSSOR-CG is a factor 2 larger
: than E/O-NRCG

1 CG one iteration:

; NRSSOR-CG requires 1.5x
computation than E/O-NRCG
during one CG-iteration.

0 2 4 6 8 10 12
Tera Flop count

2012/12/13

14 16 18 20

QUCS 2012 (2012/12/13-16) 19

4. Results

* Timing for CG convergence

TrOv(24) Solver Performance Comparison on p=5.7, 12%x24

'
[o2]

usage. The good cache
property of NRSSOR cures
larger computational cost of
NRSSOR.

Time counts The convergence time is
110‘?:’ R slightly slower for NRSSOR-CG
102 \—— NRSSOR(w=1.5)->CG 7 | than E/O-NRCG.
107
10t 1 | NRSSOR has some benefit
£ el 1 | from the local update
3 107 ¢ algorithm as it helps cache

esidual

— —

o O
[(a]

R
-
o
6" [}

—
o
Lo oL 2
N =
ey

—_
w

— — — —r
c:)l c:)I c:)I c:)l
o =
™y

0 2loo 4;30 660 sloo 10|oo 12|00 1400 NRSSOR|S SIOW.

Time [sec] count

2012/12/13 QUCS 2012 (2012/12/13-16) 20

5. Summary

We tested the SSOR preconditioner for the normal equation of the
Domainwall fermion.

We compared the NRSSOR-CG and Even/odd-NRCG.
The CG iteration count is reduced by a factor 3/4
The computational cost is 1.5x larger for single CG-iteration.

The convergence time of the NRSSOR-CG is slower than the
Even/Odd-NRCG

The Origin of the larger computational cost

— My implementation for the NRSSOR keeps the relation £~ Do X
during the SSOR iteration. This computation contains redundant
computation. Some component of z is not reused.

