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1. Lattice Chiral fermions and 
chiral symmetry 

• Lattice Chiral fermions 
– Lattice chiral symmetry:  extends continuum chiral 

symmetry on the lattice 

– Avoids additive mass renormalization 

– Important  phenomenologically and theoretically 
• Low energy QCD/finite temp/chiral condensate,… 

• Overlap/Domainwall fermions 

• Needs huge computational resources  
– Overlap/Domainwall  type >>  Wilson type > 

Staggered type 
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1. Lattice Chiral fermions and chiral 
symmetry 

• Needs huge computational resources  
– Overlap/Domainwall  type >> Wilson type > Staggered 

type 

– This is due to maintain the lattice chiral symmetry or 
to maintain accuracy of signum function of 
Wilson/Dirac operator 

– Overlap operator inversion solver 

• In this talk 
– Testing solver improvement for  

• Domainwall fermion inversion (as a 5-D effective form of 
Overlap fermions) 

• On a small lattice 
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1. Lattice Chiral fermions and chiral symmetry 

• Linear equations for Chiral fermions 

– Overlap operator 

 

 

– GW-relation 

 

– Linear equation 

• 5-Dimensional effective form 

– By introducing a signum function approximation(matrix 
function) 

 

                                                              

– at a desired accuracy (sign-func). 
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1. Lattice Chiral fermions and chiral symmetry 

• The form of the 5-Dimensional effective operator 
– Overlap fermion solver can be converted into 5-Dimensional effective 

form (at a accuracy for signmum function) 

 

 

– n, m : 4-D lattice index, r, s : 5th index, a, b : color, αβγ: spin 

– There are several types for the matrixes  X and Y.  Based on the 
approximation  type of the signum function. 

– D４DW  :  4-D Wilson/Dirac matrix with a negative bare mass 

 

 

 

– D5Deff  has sparse matrix structure on 4D lattice site index.  Easy to 
implement. 

• improve and speed up to solve 
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1. Lattice Chiral fermions and chiral symmetry 

• Properties of the 5-D effective coefficient matrix 

 

 
– This contains negative real-part eigenvalues.  (at least in free cases) 

 

 

 

 

 

 

 

 

 

– Linear equation                                               is not suitable for iterative 
solvers. 
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1. Lattice Chiral fermions and chiral symmetry 

•                            is not suitable for any iterative solvers as      
contains eigenvalues  with negative  real-part. 

• Usually this is solved by normalizing the equatoin: 

 

• Or 

 

• The coefficient matrix is now non-negative and Hermit. We 
can solve them with CG iterative algorithm. 

• However the convergence is slow as the coefficient matrix is 
doubled and could have a large condition number. 

• Preconditioning for the normal equation is desired to improve 
the convergence property. 
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1. Lattice Chiral fermions and chiral symmetry 

• In this talk, I tried two types of preconditioning for the 
Domainwall quark sovler and compared them on a 
small lattice. 

• (1) Even/odd site precidiotioning  for 

                                     +  then Normalized  

• (2) SSOR preconditioner for the normal equaiton:  

 
– No-lattice parallelism. Single computer test. 

– Type(1) preconditioning has been used in the literature. 

– Tyep(2) the direct use of the SSOR for the normal equation is not seen. 

• Conclusion from my test:  

• Type(2) is not good at the elapse time level even if  the 
reduction of the iteration counts of the CG solver is seen. 
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２. Even/Odd preconditioning + normalize 
• Preconditioning  based on Even/Odd (or Red/Black) site 

ordering   
– 4D lattice index is colored by mod(nx+ny+nz+nt, 2).  D5Deff  is Sparse matrix 

(w.r.t.  4D lattice site index)  

 

 
 

– The linear equation                                       is transformed to 
 

 

 

 

 

 

 

–                     is still ill conditioned (e-values with negative real part). Normal 
equation is applied. 
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３. SSOR preconditioning for Normal 
equations 

• SSOR Preconditioning by the 4D-site index structure: 

 

 

 

• SSOR preconditioning  by  multiplying the inverse of  

 

 

 

 

• The inversion of                                                    is done by 
forward or backward substitution. 
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3. SSOR preconditioning for Normal equations 

 

 

 

 

 

 
 

•          is still non-negative and has a reduced condition number. 

• Expected that CG solver for (B) converges faster than original equation. 

• However the implementation of the forward and backward solver is 
difficult. This is because of the extended hopping structure of  

• Here we consider  

– Normal site ordering. 

– Domainwall operator. 
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Hopping structure of                   . 
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• 4D lattice site access 
pattern of 

• Two-hopping 
operations（orange and 
yellow） 

• L-type link vars. 
• L-type access is tensor. 
• Computational cost is 

much larger if we do 
not use intermediate 
vectors. 

• SSOR requires hopping 
access decomposition. 

DWFDWF DD
†
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Difficulty of SSOR 
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• Two hopping operations in          

 

 

 

 

 

• Tensor summation => Too many  computations. 

• We must keep intermediate vector site by site as 
done usualy for  
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SSOR  for Normal equation by Saad  (NRSSOR) 
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• Site access pattern for 

 

 

 

 

 

 

 
•  Keeping working vector z  s.t.                         holds 
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†
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3. SSOR preconditioning for Normal equations  by Saad 
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• Solver algorithm for 
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4. Results 
• Benchmarking Parameters 

– 12^3x24,β=5.7 Wilson gauge Quenched one config 

– DWF (Borici) Domainwall, 

– DW height M = 1.6 

– mass  mq=0.03    

– SSOR  over relaxation parameter  omega=1.0, 1.5 

– ５th length N5=24 

– mres = －0.01655 

– We compare 
• Iteration counts,  timing, and Flop counts for CG 

convergence between  

             (1) Even/Odd-NRCG and    (2) NRSSOR-CG 
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4. Results 
• CG residual history 

18 

Reduced Iteration counts 
for NRSSOR-CG 
By ¾. 
 
 
NRSSOR actually  reduces 
the condition number 
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4. Results 
• CG Floating point number operation history 
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Total Flop count:   
NRSSOR-CG is a factor 2 larger 
than E/O-NRCG 
 
CG one iteration: 
NRSSOR-CG requires 1.5x 
computation than E/O-NRCG 
during  one CG-iteration. 
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4. Results 
• Timing for CG convergence 
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The convergence time is  
slightly slower for NRSSOR-CG 
than E/O-NRCG. 
 
NRSSOR has some benefit 
from the local update 
algorithm as it helps cache 
usage.   The good cache 
property of NRSSOR cures 
larger computational cost of 
NRSSOR.  
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5. Summary 
• We tested the SSOR preconditioner for the normal equation of the 

Domainwall fermion. 

• We compared the NRSSOR-CG and Even/odd-NRCG. 

• The CG iteration count is reduced by a factor 3/4 

• The computational cost is 1.5x larger for single CG-iteration. 

• The convergence time of the NRSSOR-CG is slower than the 
Even/Odd-NRCG 

• The Origin of the larger  computational cost 

– My implementation for the NRSSOR keeps the relation                          
during the SSOR iteration.   This computation contains redundant 
computation.  Some component of z is not reused.  
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