Variational Study of a Nuclear Equation of State for Core-Collapse Supernovae

<u>H. Togashi</u> (Waseda University)

H. Kanzawa, M. Takano (A02, A03: Waseda University)

S. Yamamuro, H. Suzuki, K. Nakazato (A03: Tokyo Univ. of Science)

K. Sumiyoshi (A03:Numazu College of Technology)

H. Matsufuru (A04: KEK)

Contents

1: Introduction

- 2: EOS for Uniform Nuclear Matter
- 3: EOS for Non-uniform Nuclear Matter

4: Summary

QUCS 2012 @ Nara, 14 Dec. 2012

1. Introduction

The aim of this study is

To construct *a new nuclear Equation of State (EOS)* for supernova (SN) simulations based on the realistic nuclear force.

The nuclear EOS plays an important role for astrophysical studies.

1. Lattimer-Swesty EOS : <u>The compressible liquid drop model</u>

(NPA 535 (1991) 331) 2. Shen EOS : *The relativistic mean field theory* (NPA 637 (1998) 435)

- K. Nakazato EOS : (PRD 77(2008) 103006) G. Shen EOS : (PRC 83 (2010) 015806)
- C. Ishizuka EOS : (J. Phys. G 35(2008)085201) M. Hempel EOS : (NPA 837 (2010) 210)
- S. Furusawa EOS : (APJ 738 (2011) 178)

These EOSs are based on **phenomenological models** for uniform matter.

There is **no** nuclear EOS based on **the microscopic many-body theory**.

We aim at a new EOS for SN with the variational method.

Our Plan to Construct the EOS for SN Simulations

Uniform Nuclear Matter

EOS constructed with *the cluster variational method*

CLEAT

Non-uniform Nuclear Matter

EOS constructed with the Thomas-Fermi (TF) calculation

1. EOS for non-uniform matter at zero temperature \star We are here. \star

2. EOS for non-uniform matter at **finite temperature**

Completion of a Nuclear EOS table for SN simulations

Density ρ : $10^{5.1} \le \rho_{\rm m} \le 10^{16.0} {\rm g/cm^3}$	110 point
Temperature $T: 0 \le T \le 400 \text{ MeV}$	92 point
Proton fraction $x: 0 \le x \le 0.65$	66 point

2. EOS for Uniform Nuclear Matter

The Nuclear Hamiltonian

$$H = H_2 + H_3$$

Two-body Hamiltonian

$$H_{2} = -\sum_{i=1}^{N} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} + \sum_{i < j}^{N} V_{ij}$$

the AV18 two-body nuclear potential

Three-body Hamiltonian

$$H_3 = \sum_{i < j < k}^N V_{ijk}$$

the UIX three-body nuclear potential

We assume the Jastrow wave function.

$$\Psi = \operatorname{Sym}\left[\prod_{i < j} f_{ij}\right] \Phi_{\mathrm{F}}$$

 f_{ij} : Correlation function

 $\Phi_{\rm F}$: The Fermi-gas wave function

at zero temperature

 P_{ts}^{μ} : Spin-isospin projection operators

$$f_{ij} = \sum_{t=0}^{1} \sum_{\mu} \sum_{s=0}^{1} \left[\frac{f_{Cts}^{\mu}(r_{ij}) + s f_{Tt}^{\mu}(r_{ij}) S_{Tij} + s f_{SOt}^{\mu}(r_{ij}) (\boldsymbol{L}_{ij} \cdot \boldsymbol{s}) \right] P_{tsij}^{\mu}$$

Central Tensor Spin-orbit

Two-Body Energy

 E_2/N is the expectation value of H_2 with the Jastrow wave function

in the two-body cluster approximation.

$$\frac{E_2}{N}(\rho, x) = \frac{\langle H_2 \rangle_2}{N}$$

 ρ : Total nucleon number density

 $\rho_{\rm p}$: Proton number density $x = \rho_{\rm p}/\rho$: Proton fraction

 E_2/N is minimized with respect to $f_{Cts}^{\mu}(r), f_{Tt}^{\mu}(r)$ and $f_{SOt}^{\mu}(r)$ with the following two constraints.

1. Extended Mayer's condition

$$\rho \int \left[F^{\mu}_{ts}(r) - F^{\mu}_{Fts}(r) \right] d\boldsymbol{r} = 0$$

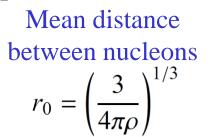
 $F_{ts}^{\mu}(r)$: Radial distribution functions $F_{\text{Fts}}^{\mu}(r)$: $F_{ts}^{\mu}(r)$ for the degenerate Fermi gas

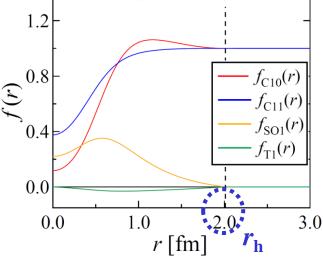
2. Healing distance condition

Healing distance

 $r_{\rm h} = a_{\rm h} r_0$

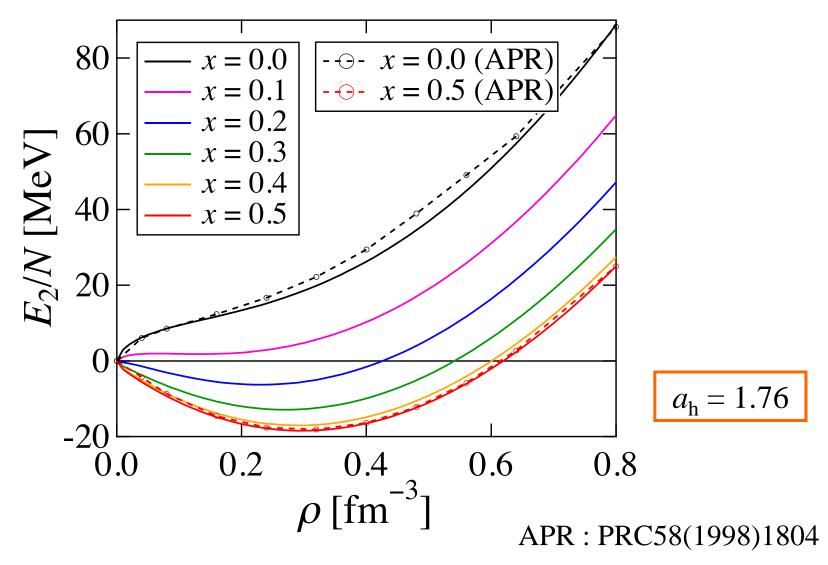
 $a_{\rm h}$: adjustable parameter





 $a_{\rm h}$ is determined so that E_{γ}/N reproduces the results by APR(Akmal, Pandharipande and Ravenhall) APR : PRC58(1998)1804

Two Body Energy



Our results are in good agreement with the results by APR (FHNC method).

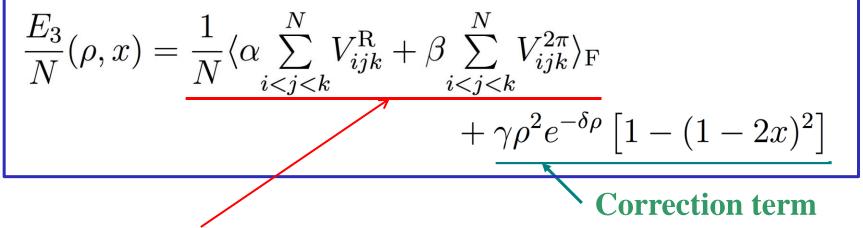
Three-Body Energy

UIX potential

$$V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^R$$

 $V_{ijk}^{2\pi}$:2-pion exchange part V_{ijk}^{R} :Repulsive part

Three Body Energy



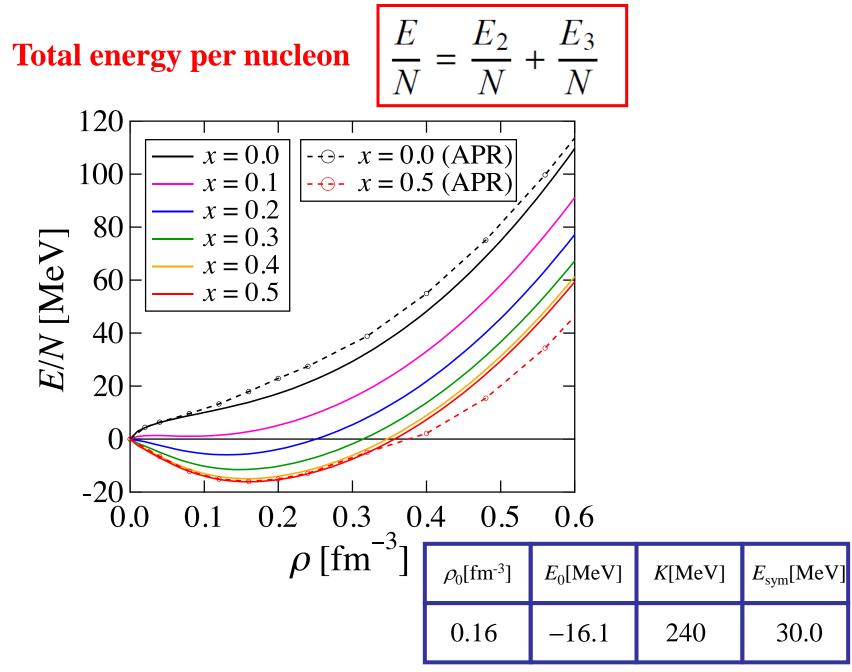
Expectation value with the Fermi-gas wave function

 $\alpha, \beta, \gamma, \delta$: adjustable parameters

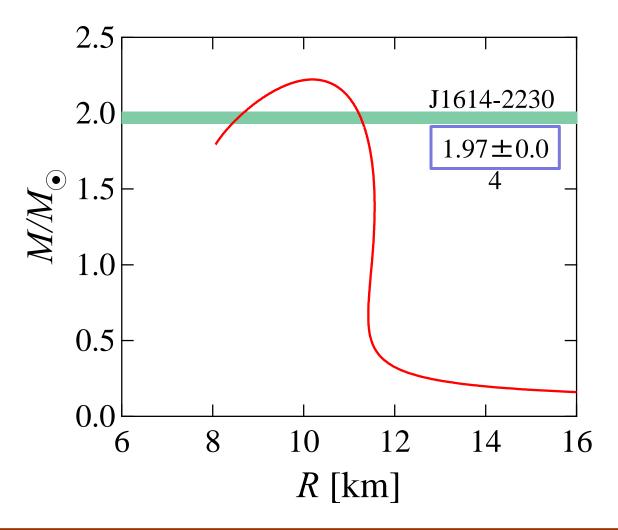
Parameters of E_3/N are determined so as to reproduce the empirical data.

TF calculation for atomic nuclei reproduces the gross feature of the experimental data.

Total Energy per Nucleon at Zero Temperature



Application to Neutron Star



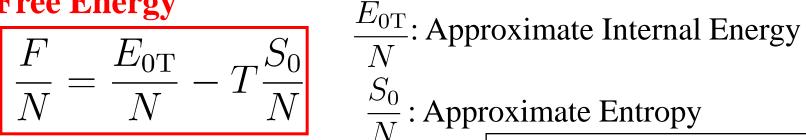
The NS mass-radius relation is consistent with observational data .

Free Energy at Finite Temperatures I

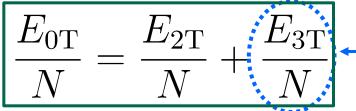
We follow the prescription proposed by *Schmidt and Pandharipande*.

(Phys. Lett. 87B(1979) 11) (A. Mukherjee et al., PRC 75(2007) 035802)

Free Energy



Approximate Internal Energy



 S_0/N is expressed with the averaged occupation probabilities $n_i(k)$

chosen to be the same as at 0 MeV

 E_{2T}/N :Two-body internal energy at finite temperatures $E_2/N[f_{ij}, n_{T=0}(k)] \longrightarrow E_{2T}/N[f_{ij}, n(k)]$

Correlation function f_{ii} is chosen to be the same at OMeV. **Frozen-Correlation Approximation**

Free Energy at Finite Temperatures II

The averaged occupation probability

$$n_i(k) = \left\{ 1 + \exp\left[\frac{\varepsilon_i(k) - \mu_i}{k_{\rm B}T}\right] \right\}^{-1} \qquad (i = p, n)$$

 μ_i is determined with the normalization condition.

 $\varepsilon_i(k)$: Single particle energy

$$\varepsilon_i(k) = \frac{\hbar^2 k^2}{2m_i^*}$$

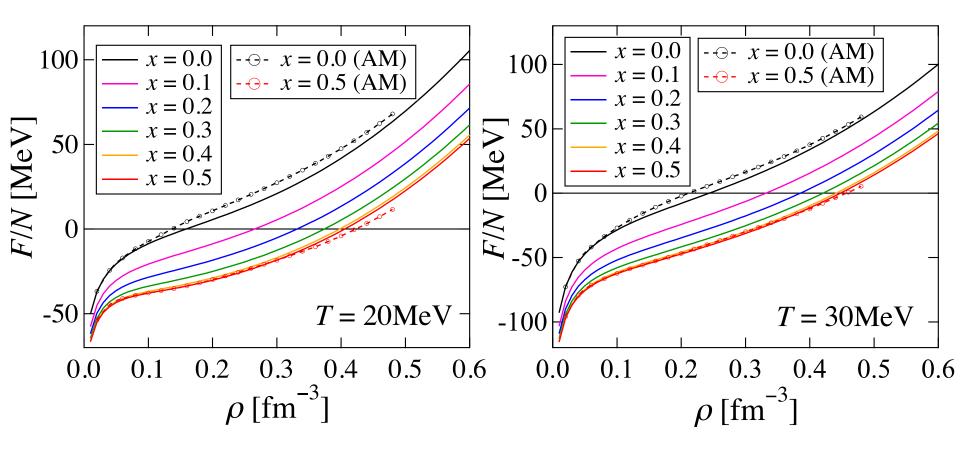
 m_i^* : Effective mass of nucleons

Approximate Entropy

$$\frac{S_0}{N} = -\frac{k_{\rm B}}{N} \sum_{i={\rm p},{\rm n}} \sum_{\rm spin} \sum_k \left\{ [1 - n_i(k)] \ln [1 - n_i(k)] + n_i(k) \ln n_i(k) \right\}$$

Free energies are minimized with respect to $m_{\rm p}^*$ and $m_{\rm n}^*$

Free Energy per Nucleon at Finite Temperatures

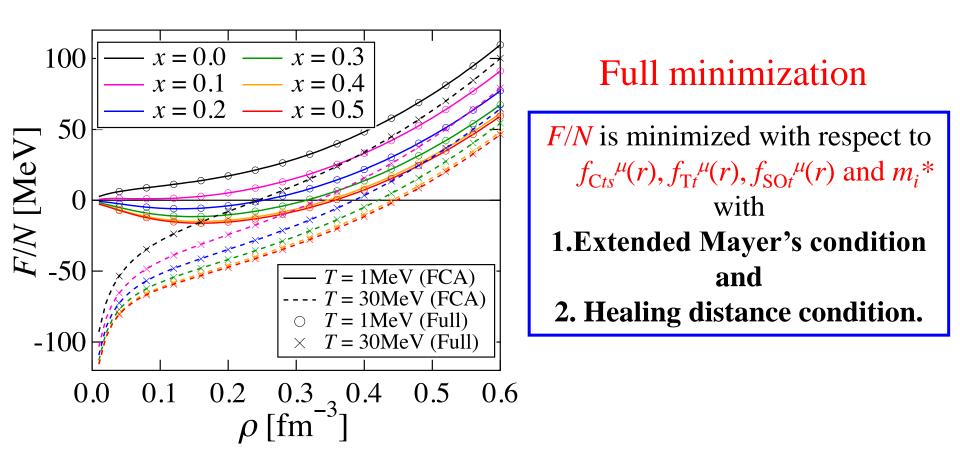


Free energy per nucleon at *T*=20MeV

Free energy per nucleon at *T*=30MeV

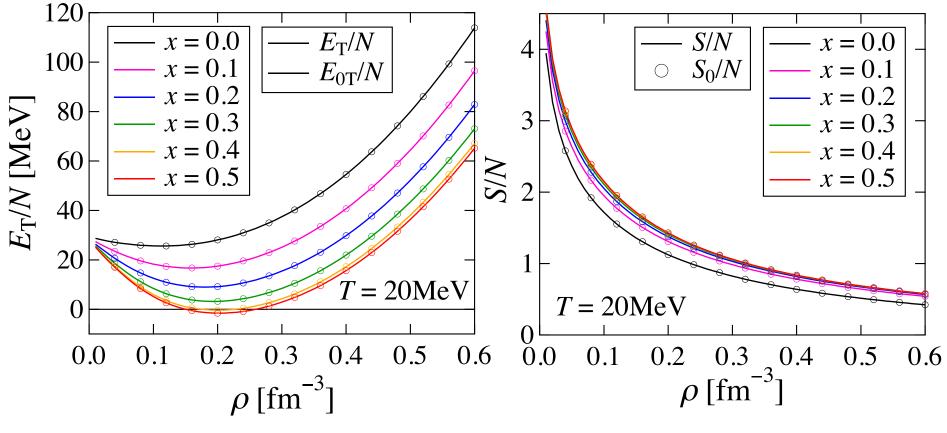
AM : A. Mukherjee, PRC 79(2009) 045811

Validity of the Frozen-Correlation Approximation



The free energies with the frozen-correlation approximation are in good agreement with those with the full minimization.

Internal Energy and Entropy



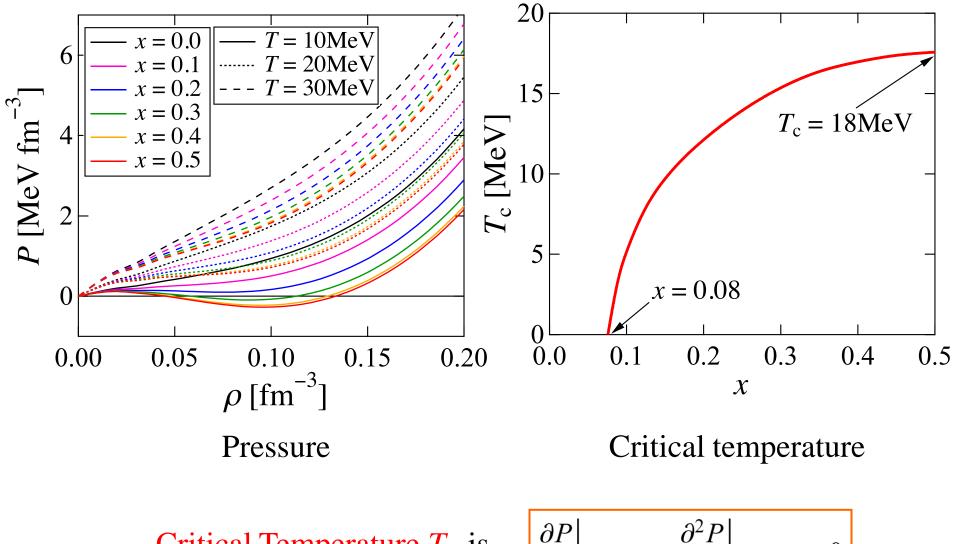
Internal energy at *T*=20MeV

Entropy at *T*=20MeV

Entropies are in good agreement with the approximate entropies.

This variational calculation is Self Consistent.

Pressure and Critical Temperature



Critical Temperature $T_{\rm C}$ is defined by

$$\left. \frac{\partial P}{\partial \rho} \right|_{x,T=T_{\rm C}} = \left. \frac{\partial^2 P}{\partial \rho^2} \right|_{x,T=T_{\rm C}} = 0$$

3. EOS for Non-uniform Nuclear Matter

We follow the TF method by Shen et. al. (NPA637(1998)435) Free energy in the Wigner-Seitz (WS) cell

$$F = \int d\mathbf{r} f(n_{\rm p}(r), n_{\rm n}(r)) + F_0 \int d\mathbf{r} |\nabla n(r)|^2$$

+ $\frac{e^2}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[n_{\rm p}(r) - n_{\rm e}][n_{\rm p}(r') - n_{\rm e}]}{|\mathbf{r} - \mathbf{r}'|_{\text{Coulomb energy}}} + c_{\rm bcc} \frac{(Ze)^2}{a}$

 $F_0 = 68.00 \text{ MeV fm}^5$

Nucleon density distribution

a : Lattice constant

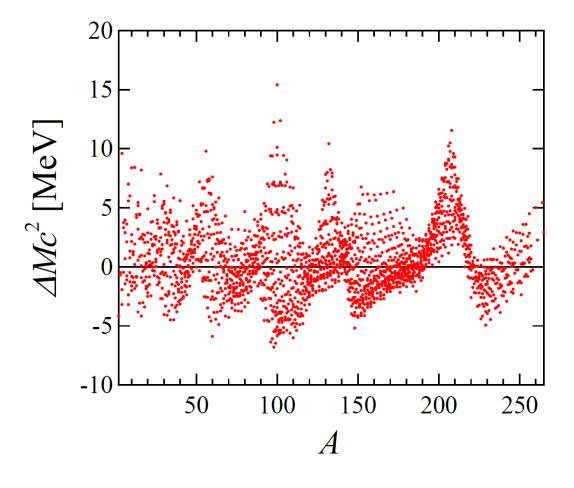
24 × 213 × 1980 = 10121760 points

$$n_i(r) = \begin{cases} n_i^{\text{in}} [1 - (r/R_i)^{t_i}]^3 + n_i^{\text{out}} & (0 \le r \le R_i) \\ n_i^{\text{out}} & (R_i \le r \le R_{\text{cell}}) \end{cases} \quad (i = p, n) \quad V_{\text{cell}} = \frac{4\pi R_{\text{cell}}^3}{3} = a^3$$

f : Free energy density of uniform nuclear matter

Parameter	Minimum	Maximum	Number
$\log_{10}(T)$ [MeV]	-1.24	1.40	23 + 1
x	0.0	0.5	213
ho [fm ⁻³]	0.000001	0.18	1980

TF Calculation for Atomic Nuclei

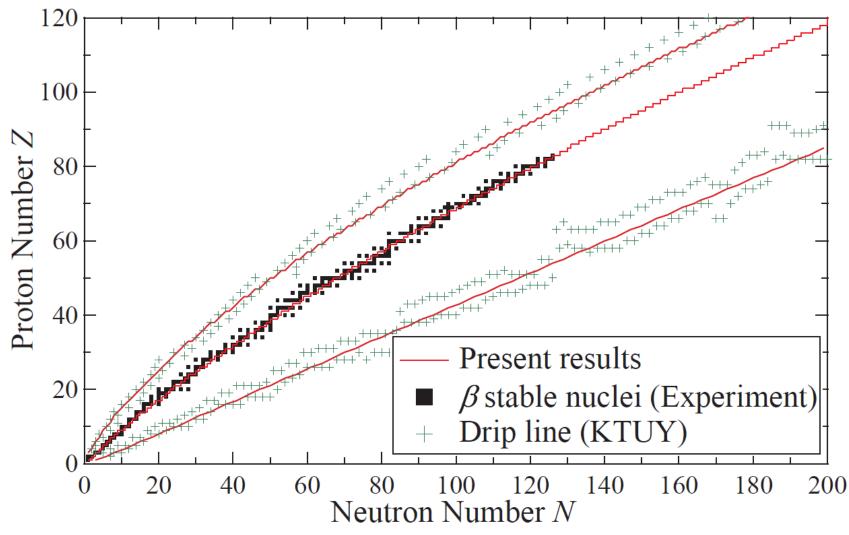


$$\Delta M = M_{\rm TF} - M_{\rm exp}$$

 $M_{\rm TF}$: Mass by the Thomas-Fermi calculation $M_{\rm exp}$: Experimental data

RMS deviation (for 2226 nuclei) 2.99 MeV

TF Calculation for Atomic Nuclei

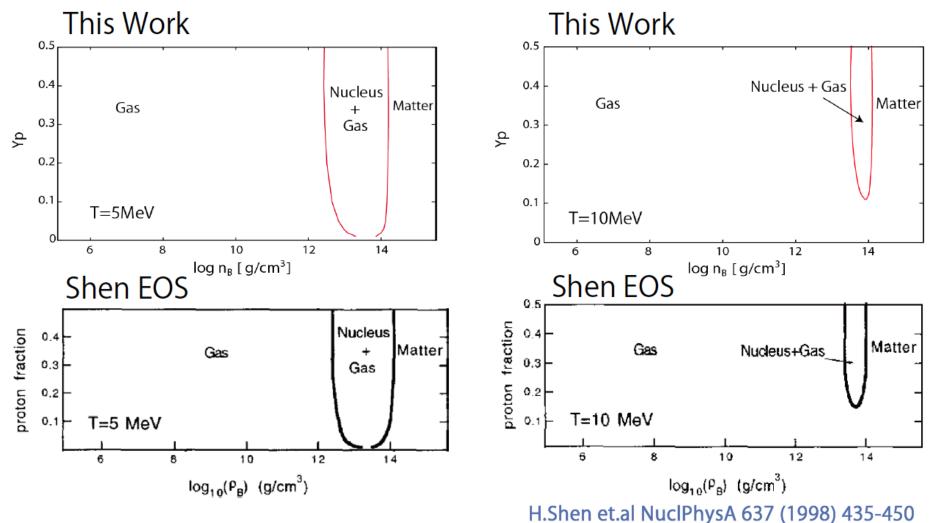


Our results are in good agreement with the experimental data and the sophisticated atomic mass formula.

TF Calculation for Non-uniform Nuclear Matter



TF Calculation for Non-uniform Nuclear Matter



Phase diagrams of nuclear matter at *finite temperatures*

 F/V_{cell} is minimized with respect to n_i^{out} , $n_i^{in} R_i$, t_i , *a* at given density and proton fraction.

5. Summary

- The EOS for uniform nuclear matter is constructed with the cluster variational method. (zero and finite temperatures)
- The EOS for non-uniform nuclear matter is constructed in the Thomas-Fermi approximation. (zero and finite temperatures)

Uniform nuclear matter

The obtained thermodynamic quantities are reasonable. This variational calculation is self consistent.

The validity of the frozen-correlation approximation is confirmed. Non-uniform nuclear matter

RMS deviation for atomic nuclei is 2.99 MeV. Phase diagrams are reasonable at zero and finite temperatures.

Ongoing Calculations

- Construction of the EOS table for non-uniform matter
- Contribution of the α -particle mixing

Construction of the EOS for supernova simulations