Quark Gluon Plasma

Y. Akiba (RIKEN Nishina Center) Qukars to Universe in Computational Science December 14, 2012

QCD Phase Transition

The colliding nuclei at high energies would melt protons and neutrons

into a collection of quarks and gluons Temperature 200 Water Vapor Temperature [MeV] Quark Gluon Plasma ritical point 100°C FAIR@GSI 100-Liquid Water Hadron-Matter 0°C Ice 0 Baryon Density [in units of nuclear matter density] heat pressure quark-gluon 760mm Pressure plasma This is the only phase transition that occurred in the early universe that can be recreated in the lab

RHIC at BNL

RHIC p+p at vs=5t9 GeV max Au+Au at vs=200 GeV max Started at Year 2000 collided various beams pp, dAu, CuCu, CuAu AuAu, UU

Approx 500 tracks result from a Au+Au ion collision

LHC at CERN

p+p at $\sqrt{s}=7, 8$ TeV Pb+Pb at $\sqrt{s}=2.76$ TeV heavy ion running: 4 physics weeks/year First Pb+Pb in 2010

ALICE

Hot QCD Matter

- Systematic study with different condition (T, μ) with various probe is required to *quantitatively understand properties of QGP*
- Both RHIC and LHC is needed to provide *large leverage* in conditions and dynamic range of hard probes (p_τ, mass, etc).

RHIC's Two Major Discoveries

Dense and low viscosity fluid is formed in nuclear collisions at RHIC These results are confirmed by LHC at higher energy

Initial temperature via photons

PHENIX PRL104, 132391 (2010)

- Large enhancement of direct photons at low p_T at RHIC
- Consistent with thermal radiation with initial temperature of 300-600 MeV

High pT hadron suppression

Strong suppression of high p_T pi0

R_{AA} of various particles

- Same suppression for pi0 and eta
- Ncoll scaling for direct γ

LHC extends R_{AA} to ~100 GeV/c

Strong constraint on the parton energy loss models Rise to RAA ~ 0.5 at pT~30-40 GeV/c and stay constant (?)

Energy loss at RHIC and LHC

- R_{AA} increase at high p_T at RHIC and LHC
- R_{AA}(LHC)<R_{AA}(RHIC) at the same p_T, indicating stronger energy loss
- Fractional energy loss deduced from R_{AA} is higher at LHC
- \rightarrow Started to see difference in medium property at RHIC and LHC

Jet energy loss is directly seen

Jet Energy asymmetry

 A large jet ET asymmetry → direct evidence of Jet energy loss in QGP

Jet measurements at LHC

- LHC demonstrated that direct jet measurement in heavy ion collision is possible.
- Rich data on reconstructed jets at LHC from ATLAS and CMS

 $-R_{AA}$, v₂, Jet-Jet, γ -Jet, Z/W-jet, Jet fragmentation, etc

Elliptic Flow

In non-central collisions, high matter with elliptic shape is for Expansion towards reaction Elliptic Flow

Comparison with viscous hydro

- Behavior of the fluid is governed by the sheer ¹ viscosity (η) to entropy density (s) ratio η/s
- Recent theoretical work with non-zero viscosity suggests that very small $\eta/s \sim 0.1$ is required to explain RHIC v₂ data
- Matter formed at RHIC is almost *perfect fluid*.

(Almost) perfect liquid

v2 data from RHIC indicates that the high density matter formed at RHIC has very small η /s.

The value, η /s ~ 0.1, is 1/10 of all known matter, and it is close to the lower bound 1/4 π conjectured by AdS/CFT model

10¹² °C

Elliptic Flow at LHC: similar to RHIC

Is there difference in eta/s?

Triangular flow v3

$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos n \left(\phi - \Psi_n \right)$$

Elliptic flow v2 is the 2nd order Fourier component of azimuthal distribution There are higher order componets v3, v4, v5....

Odd order componets v3, v5, etc relative to reaction plane is zero due to symmetry

Event-by-Event Fluctuation of initial geometry cause v_3 and higher odd order components.

Initial geometry 3^{rd} order component ϵ_3 causes 3^{rd} order flow v3

V3 is a good probe of initial condition

v_3 disentangles initial state and η/s

PRL107,252301

Higher Order Flow and eta/s

- Higher order flows v3, v4, etc are sensitive to viscosity η/s
- Finite η /s makes the final state smoother \rightarrow reduce higher v_n

- •B. Schenke, S. Jeon, C. Gale, Phys. Rev. C82, 014903 (2010); Phys.Rev.Lett.106, 042301 (2011)
- •B.Schenke, P.Tribedy, R.Venugopalan, Phys.Rev.Lett. 108, 252301 (2012)

The Big Bang vs the Little Bangs

The Universe

distributions and

WMAP

What we conclude from fluid dynamics

 $1 \leq 4\pi \left(\eta / s \right) \leq 2$

Beam Energy Scan : Search for critical point

0) Turn-off of sQGP signatures

- 1) Search for the signals of phase boundary
- 2) Search for the QCD critical point

BES Phase-I

Year	√s _{NN} (GeV)	Events (10 ⁶)
2010	39	130
2011	27	70
2011	19.6	36
2010	11.5	12
2010	7.7	5

What I didn't covered

- Hadron spectra and yield
- Heavy quark probe
 - Energy loss
 - Flow
- Quarkonia (J/Psi, Upsilon)
- Low mass lepton pairs
- Direct photon v2
- Chiral magnetic effect
- Fluctuations
- and more...

Computation for QGP physics

Quantitative study of QGP property requires comparison of the data and precise theory calculations

- Relativistic Hydrodynamics
 - Full 3D with viscosity
 - event-by-event calculation to take into account fluctuations of the initial condition
- QGP properties from Lattice QCD
 - Тс
 - Critical Point
 - EOS
 - eta/s
 - Heavy quark potential at finite Tc
 - conductivity in QGP
 - EM emission rate

Summary

- New phase of matter, QGP, is discovered at RHIC and is confirmed at LHC
 - QGP is characterized by
 - Near perfect fluidity
 - Strong energy loss of parton
- This is the only "Phase transition" of quantum field realized at laboratory
- Quantitative study of its properties at RHIC and LHC