PROGRESS OF ALGORITHMS IN LATTICE GAUGE SIMULATIONS

A D Kennedy University of Edinburgh

Outline

- Functional Integrals and Monte Carlo
- Markov Chains
- Hybrid Monte Carlo
- Multiple Pseudofermions
- Domain Wall and Overlap
- Shadow Hamiltonians
- Perambulation, Distillation, and all that
- Implications for Hardware
- My goal is to give a broad overview for non-experts

 The goal of LGT is to solve quantum ield theories non-perturbativel Not solving PDE - But we end up integrating Hamilton's equations anyhow Lots of linear algebra Well suited to large parallel computers

Functional Integrals

 The basic problem is just to evaluate the Feynman path integral for some interesting <u>action</u> S and <u>observable</u>

$\langle W \rangle = \frac{1}{Z} \Box df W(f) e^{iS(f)}$

This looks easy, but *[*] is a <u>field</u> and the integral is thus infinite dimensional

Monday, 17 December 2012

Euclidean Field Theory

- In order to make this numerically tractable we work in Euclidean space where e^S and e^S is real and positive We will pay for this later when we want to
 - make measurements
 - Similar to statistical mechanics

Configurations & Measurements

Computations are split into two phases

 Generate ensemble of field configurations
 Make measurements on this ensemble

28

29 30

 $\overline{W} = \frac{1}{N} \bigcup^{N} W(f_n)$

Monte Carlo

- The only feasible way of evaluating ∞ dimensional integrals is by Monte Carlo
- Hopeless without importance sampling
- Need to generate four dimensional field configurations with probability density

 $P(f)df \square e^{S(f)}df$

Monday, 17 December 2012

Markov Chains

- Use ergodic Markov chain with this distribution as its fixed point
 - Ergodic means you can get from anywhere to anywhere with non-zero probability
- Fixed point ← detailed balance ← Metropolis
- We can mix different steps as long as they all have the same fixed point distribution
 - Individual steps do not need to be ergodic as long as a combined steps are ergodic

Monday, 17 December 2012

Hybrid Monte Carlo

 Introduce a "fictitious" Hamiltonian system with action as the potential

$$H(f, p) = \frac{1}{2}p^2 + S(f)$$

 Generate fields in this "phase space" with distribution

 $P(f,p) \Box \bar{e}^{H(f,p)}$

Monday, 17 December 2012

Hamiltonian Monte Carlo

- We then use Hamilton's equations to produce a reversible and area preserving Markov step
 - Perfect for Metropolis with acceptance probability $\frac{P(f,\rho)}{P(f,\rho)}$

accept

HMC

- To make this ergodic interleave it with a momentum refreshment Markov step
 - This just selects new momenta from a Gaussian heatbath
- Symmetric Symplectic Integrators
 - No step-size errors
 - Step-size just controls acceptance rate
 - Acceptance rate and trajectory length control autocorrelations
- Still interesting questions about scaling behaviour (Lüscher and Schaefer)

Monday, 17 December 2012

Fermions

 Fermions are anti-commuting (Grassmann) fields

$Z(h,\hbar) = \Box dy dy e^{\nabla \mathcal{M}(f)y + \hbar y + y \hbar}$ $= \det \mathcal{M}(f) e^{\hbar \mathcal{M}(f)^{-1} \hbar}$ $\cdot \text{ This causes two <u>nasty</u> problems}$

Fermionic Observables

- Nasty problem #1
 - Need inverses of the fermion kernel for fermion correlators

 $\left\langle y(x)\overline{y}(y)\right\rangle = \frac{d^2 Z}{d\hbar(x)dh(y)} = \mathcal{M}_{x,y}^{-1}(f)$

Pseudofermions

Nasty problem #2

 Write the fermion determinant as a <u>bosonic</u> functional integral

 $\det \mathcal{M}(f) \square \Box d\bar{x} dx e^{\bar{x} \mathcal{M}^{-1}(f)x}$

 These unphysical spin-half bosons are known as <u>pseudofermions</u>

Monday, 17 December 2012

Pseudofermion Heatbath

- We can easily generate pseudofermion fields from another Gaussian heatbath
- But we need to solve a linear system to update the gauge fields

 $\int_{S} = -\frac{\Box H}{\Box f} = -\frac{\Box}{\Box f} \int_{S} (f) + \overline{x} \mathcal{M}^{-1}(f) x$ $= -\frac{\Box S}{\Box f} + \overline{x} \mathcal{M}^{-1}(f) \frac{\Box \mathcal{M}(f)}{\Box f} \mathcal{M}^{-1}(f) x$

Monday, 17 December 2012

Pseudofermions Instability

- For a long time it was thought that it was prohibitively expensive to reach small (physical) quark masses
- The HMC integrator step size had to be very small for light fermions to avoid instabilities
- This was thought to be caused by the Dirac operator (fermion kernel) becoming almost singular

Monday, 17 December 2012

Single Pseudofe

- But this was wrong
- The problem was that we were estimating the fermion determinant using a single pseudofermionic Monte Carlo estimate
 This is clearly a very noisy estimate
 But surely the Markov process is still valid?
 True, but it becomes very slow

Monday, 17 December 2012

Multiple Pseudo

- The solution is to introduce multiple pseudofermion fields
 - A small number suffice
 - Several ways of doing this
 Hasenbusch
 RHMC (rational approximation)
 - DDHMC (Lüscher)
- Computations with physical quark masses now possible

OUCS

Monday, 17 December 2012

Chiral Symmetry

- Another long-standing problem of lattice field theories was that chiral symmetry y = e^{iag5} y is explicitly broken on the lattice
 - It is violated by both Wilson and staggered discretizations of the Dirac operator
 - Only restored in the continuum limit with much fine-tuning
 - Chiral symmetry explains much low-energy phenomenology, such as the _____ being the Goldstone boson for spontaneously broken chiral symmetry

Monday, 17 December 2012

On-Shell Chiral Symmetry

Replace with Lüscher's on-shell chiral symmetry

Which leads to the Ginsparg—Wilson relation

 $dag_5(1-aD)$

 $(g_5D + Dg_5 = 2aDg_5D)$

Monday, 17 December 2012

QUCS 2012, Nara

dia(1- aD)g5

Domain Wall and Overlap

 This problem has been solved by the (equivalent) <u>Domain Wall</u> and <u>Overlap</u> formulations

 $D_{N} = \frac{1}{2} [1 + g_{5} \operatorname{sgn} g_{5} (D_{W} - M)]$

- This <u>Neuberger operator</u> is very expensive to apply, and even more expensive to invert
- We need to implement the sgn function
- Most algorithms use some rational approximation and some five-dimensional Schur complement

Monday, 17 December 2012

Improvement

<u>Improved actions</u> have long been popular

 Improve discretization to better approximate continuum physics on coarse lattices

THE GOOD NEWS IS, THERE'S ROOM FOR IMPROVEMENT.

- Works in context of perturbative QFT (Symanzik)
- Sadly, improvement is an asymptotic expansion and cutoff effects fall as $a^n + e^{-c/a}$
- But improved actions are less local
 - Not a problem in principle, but maybe in practice as we work on finite lattices

Monday, 17 December 2012

Shadow Hamiltonians

- Numerical integration of Hamilton's equations use symmetric <u>symplectic</u> <u>integrators</u>
- These exactly conserve a Shadow Hamiltonian close to the desired one
 - Again, only an asymptotic expansion
- This can be used to "automate" tuning of integrator parameters
- Higher-order integrators important for larger lattice volume?

Monday, 17 December 2012

Perambulation, Distillation, etc.

- Finding eigenstates of the Hamiltonian (Transfer Matrix)
 - Measuring correlation functions is essentially just the power method
- But the state space is very large...
 - Choice of basis
 - All-to-all solvers
 - Low modes and eigensolvers
- Multigrid and local coherence
 - Helpful for many solutions on same configuratio
- Stochastic estimates
- What is a good basis for nuclei?

Monday, 17 December 2012

mplications for Hardware

- Lattice field theory Monte Carlo computations are ideally suited to massively parallel computation
 - Current bottlenecks are streaming memory access
 - Future bottlenecks probably 4D grid network communications and global reductions

Eundamental problem is getting data on/off chip

Homogeneous or inhomogenous network?

- Mainly a balance of cost and pain (cost usually wins)
- Multi-scale algorithms can be implemented but have lower performance

Monday, 17 December 2012

Software Matters

- Cost and delay of efficient implementation of new algorithms on awkward new machines
 - Tension between efficiency and portability
 - Inhibits experimentation and use of new techniques
- Algorithms and architecture stable enough to partition software stack into layers
 - Different people responsible for different layers
 - Cleaner interfaces between layers (HPC bytecode?)

Conclusions

- Lattice Gauge Simulations algorithms have reached a mature stage
- Changes have been incremental rather than revolutionary

- No reason to expect this to change

Improved methods with better volume scaling will help as lattices get larger
 – E.g., force-gradient integrators

Monday, 17 December 2012