Finite density lattice QCD at low temperatures

Keitaro Nagata Atsushi Nakamura RIISE, Hiroshima University & A02

KNarXiv:1204.6480Low-TKN, et alPTEP01A103(2012)Canonial, Lee-Yang zero,Iow TKN, AN, JHEP1204,092,(2012)EoS near Tc, Taylor,ReweightingKN, AN, PRD83,114507(2011)Phase boundary,imaginaryKN, AN, PRD82,094027(2010), Reduction Formula forWilson fermionsKN, AN, PRD82,094027(2010), Section Formula for

Introduction

Quarks to Universe in Computational Science, Nara, December13-16, 2012

S

Introduction

- LQCD at finite T and µ (quark chemical potential) are desired to understand origin & properties of matter.
- LQCD has the sign problem at nonzero μ .
- There are many progress in finite density LQCD for high T and small μ.
- Are those methods applicable to low-T and nonzero µ region ? => two difficulties

Introduction – small S/N ratio

• Example of features of QCD at low-T and finite $\tilde{\mu}$

- S/N ratio is small at low T.
- ✓ e.g., 50-100K was not enough for T/Tc=0.5 with imaginary approach [Motoki, et. al. PoS Lat2012].

Introduction - Silver Blaze of QCD

- quark number starts to increase at $\mu = m_{\pi}/2$ - isospines(left)Blaze [Cohen, PRL91,222001('03)]

$$\gamma_0(D+m)|\psi\rangle = \epsilon|\psi\rangle \qquad \epsilon_{\min} = m_\pi/2$$

- (No silver blaze in MDP, strong coupling)

Introduction - Scope of this talk

- An idea is to use an analytic expression about µ-dependence with the help of a reduction formula.
 - $\mu\text{-}dependence$ of det Δ at low T
 - spectral property and physical meaning of a reduced matrix
 - low-T limit of det Δ
 - application to small μ region

Reduction Formula

Reduction formula

- Fermion determinant det Δ
 - Locality allows to perform the temporal part of det $\boldsymbol{\Delta}$

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \det(\xi + \zeta)$$
$$\xi = e^{-\mu/T}$$
$$N_{\rm red} = 4N_c N_x N_y N_z$$
$$Q = A_1 A_2 \cdots A_{N_t}$$

 – Q and C₀ are independent of μ
 – chemical potential and gauge fields are
 Sepa('ated Hasenfratz & Toussaint('92). Adams('04), Borici('04). KN&AN('10), Alexandru & Wenger('10)

Reduction formula

Reduction of the rank of det Δ
 -Δ:4 N_c N_x N_y N_z N_t
 -Q:4 N_c N_x N_y N_z

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \det(\xi + Q)$$
$$= \xi^{-N_{\rm red}/2} C_0 \prod_{n=1}^{N_{\rm red}} (\xi + \lambda_n)$$

With the eigenvalues,
 det Δ is an analytic function of μ
 values of det Δ for any value of μ.

Barbour et al. NPB557,327('99) etc, Fodor, Katz, JHEP0203, 014('0 de Forcrand, Kratochvila, PRD73, 114512('06), etc,

Fermion Property at Low T

Quarks to Universe in Computational Science, Nara, December13-16, 2012

S

Simulation setup

- Action (gauge: RG-improved, fermion: cloverimproved Wilson with Nf=2)
- **Mass** : mps/mV=0.8
- **Lattice sizes** : 8^3x4, 8^4 (spatial volume fixed)
- Temperatures : T/Tpc=0.45~3(beta = 1.5~2.4,Nt=4 and 8)
- **Configurations** :10K configurations at $\mu=0$
- **Eigenvalue** : 400 confs. (LAPACK)

Chemical Potential Dependence at Low

• det Δ is insensitive to μ for $\mu a < 0.5$.

μ-dependence appears at μa = 0.5.
 This value is close to m_n/2 in the present setup.

Fermion Property at Low T

Quarks to Universe in Computational Science, Nara, December13-16, 2012

8

Meaning of Reduced matrix Q

• Relation to energies of quarks

$$\lambda = e^{-\epsilon/T + i\theta}$$

- comparison of Nt=4 & - & and Polyakov loop

$$Q = A_1 A_2 \cdots A_{N_t}$$
$$P = \prod_{i=1}^{N_t} U_4(t_i)$$

 $- \begin{array}{l} \textbf{zeta-regularization method} \quad [e.g. Adams, PRD70, \\ 045002('04)] \beta \\ Q = \exp\left(-\int_{0}^{\beta} H(\tau)d\tau\right) \quad H = \gamma_{4}\Delta(\mu) + \mu - (\partial/\partial t) \end{array}$

Meaning of Reduced matrix Q

• Quark number density

$$\det \Delta = \xi^{-N_r/2} C_0 \prod_{|\lambda|>1} (\xi + \lambda_n) \prod_{|\lambda|<1} (\xi + \lambda_n)$$

$$\hat{n} = \sum_{|\lambda| < 1} \left(\frac{\lambda \xi^{-1}}{1 + \lambda \xi^{-1}} - \frac{\lambda^* \xi^{-1}}{1 + \lambda^* \xi^{-1}} \right) \qquad \lambda = e^{-\epsilon/T + i\theta}$$
$$\xi = e^{-\mu/T}$$

$$=\sum_{|\lambda|<1} \left(\frac{1}{1+e^{(\epsilon-\mu)/T-i\theta}}-\frac{1}{1+e^{(\epsilon+\mu)/T+i\theta}}\right)$$

Spectral property

 λ_n

Eigenvalues form a pair(γ₅-hermiticity)

$$\leftrightarrow 1/\lambda_n^* \qquad -|\lambda| < 1 \text{ for quarks} \\ -|\lambda| > 1 \text{ for anti-} \\ \text{quarks} \end{cases}$$

• The Nt-scaling law of the eigenvalues

$$|\lambda_n| = (l_n)^{N_t}$$
 XQCDJ, PTEP01A103('12)

• Ev's are related to the pion mass (lightest mass). $\frac{1}{N_t} \max_{|\lambda_n| < 1} \ln |\lambda_n|^2$ $am_{\pi} = \lim_{N_t \to \infty} \left(-\frac{1}{N_t} \ln \left\langle c \left| \sum_{i=1}^{3V} \lambda_n \right|^2 \right\rangle \right)$ $am_{\pi} = \lim_{N_t \to \infty} \left(-\frac{1}{N_t} \ln \left\langle c \left| \sum_{i=1}^{3V} \lambda_n \right|^2 \right\rangle \right)$ Gibbs('86), PLB172,53('86) Fodor, Szabo, Toth, JHEP0708,092('07)

Meaning of Reduced matrix Q

• Quark number density

$$\det \Delta = \xi^{-N_r/2} C_0 \prod_{|\lambda|>1} (\xi + \lambda_n) \prod_{|\lambda|<1} (\xi + \lambda_n)$$
$$\lambda = e^{-\epsilon/T + i\theta}$$
$$\hat{n} = \sum_{|\lambda|<1} \left(\frac{\lambda\xi^{-1}}{1 + \lambda\xi^{-1}} - \frac{\lambda^*\xi^{-1}}{1 + \lambda^*\xi^{-1}} \right)$$
$$\xi = e^{-\mu/T}$$
$$\xi = e^{-\mu/T}$$
$$= \sum_{|\lambda|<1} \left(\frac{1}{1 + e^{(\epsilon - \mu)/T - i\theta}} - \frac{1}{1 + e^{(\epsilon + \mu)/T + i\theta}} \right)$$

• Free energy

$$Z(\mu) = \left\langle \frac{\det \Delta(\mu)}{\det \Delta(0)} \right\rangle = \left\langle N_{\max} \frac{\mu}{T} + \sum_{n=1}^{N_{\text{red}}} \ln \frac{\lambda_n + \xi}{\lambda_n + 1} \right\rangle$$
$$\ln Z(\mu) = \sum_{m=1}^{\infty} \frac{\langle A^m \rangle_c}{m!} = \left\langle N_{\max} \frac{\mu}{T} + \sum_{n=1}^{N_{\text{red}}} \ln \frac{\lambda_n + \xi}{\lambda_n + 1} \right\rangle$$

• cf

$$\ln Z = d_F V \int d^3k \ln(1 + e^{-(E-\mu)/T})$$

Summary

- We have studied QCD at low T & finite density.
 approach to low-T region with reduction formula
 - quark number density is zero for $\mu < m_n/2$ at T=0 for any configuration, assuming fixed lattice size
 - quark number density starts to increase at $\mu = m_{\pi}/2$ for each configuration.
 - confirmation: Nt-scaling law, volume
 dependence, quark mass dependence, etc

Summary

- To obtain EoS, we have studied/will study
- for low T & small µ (small S/N ratio)
 expression of free energy in reduction formula
- for large μ,
 - Improvement of overlap : DoS, high density limit, imaginary, isospin, etc, multi-ensemble reweighting
 - Silver Blaze : finite size effect, increase statistics etc
 - (MDP, strong coupling …)

Buckup Slides

Quarks to Universe in Computational Science, Nara, December13-16, 2012

È

S

Free energy

$$Z(\mu) = \left\langle \frac{\det \Delta(\mu)}{\det \Delta(0)} \right\rangle = \left\langle N_{\max} \frac{\mu}{T} + \sum_{n=1}^{N_{\text{red}}} \ln \frac{\lambda_n + \xi}{\lambda_n + 1} \right\rangle$$
$$\ln Z(\mu) = \sum_{m=1}^{\infty} \frac{\langle A^m \rangle_c}{m!} = \left\langle N_{\max} \frac{\mu}{T} + \sum_{n=1}^{N_{\text{red}}} \ln \frac{\lambda_n + \xi}{\lambda_n + 1} \right\rangle$$

Quarks to Universe in Computational Science, Nara, December13-16, 2012

Ì

Spectral property - spectral density

Spectral property - Symmetry

Small & large eigenvalues correspond to

 -|λ|< 1 for quarks
 Q ~ P = e^{-F/T}
 -|λ|> 1 for anti-quarks

Spectral property - Gap

• Ev's are related to the pion mass (lightest mass). mass). $am_{\pi} = -\frac{1}{N_t} \max_{|\lambda_n| < 1} \ln |\lambda_n|^2$ Gibbs('86),

$$am_{\pi} = \lim_{N_t \to \infty} \left(-\frac{1}{N_t} \ln \left\langle c \left| \sum_{n=1}^{3V} \lambda_n \right|^2 \right\rangle \right)$$

PLB172,53('86)

Fodor, Szabo, Toth, JHEP0708,092('07)

Spectral property - Nt scaling law

The Nt-scaling law of the eigenvalues

$$|\lambda_n| = (l_n)^{N_t} \qquad \qquad Q = A_1 A_2 \cdots A_{N_t}$$
$$Q = \exp\left(-\int_0^\beta H(\tau) d\tau\right)$$

KN et.al. (XQCD-J), ('12)

• Free energy

$$Z(\mu) = \left\langle \frac{\det \Delta(\mu)}{\det \Delta(0)} \right\rangle = \left\langle N_{\max} \frac{\mu}{T} + \sum_{n=1}^{N_{\text{red}}} \ln \frac{\lambda_n + \xi}{\lambda_n + 1} \right\rangle$$
$$\ln Z(\mu) = \sum_{m=1}^{\infty} \frac{\langle A^m \rangle_c}{m!} = \left\langle N_{\max} \frac{\mu}{T} + \sum_{n=1}^{N_{\text{red}}} \ln \frac{\lambda_n + \xi}{\lambda_n + 1} \right\rangle$$

• This form may be compared to

$$\ln Z = d_F V \int d^3 k \ln(1 + e^{-(E-\mu)/T})$$

Average phase factor vs μ

Spectral property - Volume

• Volume dependence

Taylor coefficients of EoS

- slow convergence of the Taylor series of EoS
- small S/N ratio of chemical potential dependence

Fermion properties at low T

 Fermion determinants are less sensitive to mu at lower temperatures.

$$R = \frac{\det \Delta(\mu)}{\det \Delta(0)}$$

32

Quark mass dependence

mps / mv = 0.6 (red), 0.8 (blue)*Histograms : |ev| (Left), arg(ev) (Right)* confinement (top), deconfinement(bottom)

2012

Gap is related to pion mass

$$am_{\pi} = -\frac{1}{Nt} \ln \max_{|\lambda_n| < 1} |\lambda_n|^2$$

Gibbs('86). Eigenvalues and mpi

See also, Fodor, Szabo, Toth ('06). Eigenvalues and hadron spectrum

• At low T, mpi/T is well fitted with a/T, a = 4 Tpc (mq heavy)

• At high T, mpi approaches to a constant Quarks to Universe in Computational Science, Nara, December13-16, 2012

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \det(\xi + Q)$$
$$= \xi^{-N_{\rm red}/2} C_0 \prod_{n=1}^{N_{\rm red}} (\xi + \lambda_n)$$

• Eigenvalues form a pair

$$\lambda_n \leftrightarrow 1/\lambda_n^*$$

$$- \underset{\text{det}}{\text{amma5-hermiticity}} \\ - |\lambda| < 1 \text{ for quarks} \\ \underset{\text{det}}{\text{det}} \underbrace{|\lambda| > 1}_{\xi} \underbrace{-1_{N_r} for}_{C_0} \underbrace{-1_{N_r} for}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \\ \underbrace{(\xi + \lambda_n)}_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| < 1} (\xi + \lambda_n)$$

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \prod_{|\lambda_n| < 1} (\xi + \lambda_n) \prod_{|\lambda_n| > 1} (\xi + \lambda_n)$$

• The Nt-scaling law of the eigenvalues

$$|\lambda_n| = (l_n)^{N_t}$$

$$\det \Delta = C_0 \xi^{-N_{\text{Nred}}} \prod_{|\lambda_n| < 1} \left(e^{-\mu/T} + l_n^{-N_t} e^{i\theta_n} \right) \prod_{|\lambda_n| > 1} \left(e^{-\mu/T} + l_n^{N_t} e^{i\theta_n} \right)$$

Condition of low-T & small mu limit

$$\xi > \max_{|\lambda_n| < 1} |\lambda| > \text{others}$$

Condition & pion mass

$$am_{\pi} = -\frac{1}{N_t} \max_{|\lambda_n| < 1} \ln |\lambda_n|^2$$
$$am_{\pi} = \lim_{N_t \to \infty} -\frac{1}{N_t} \ln \left\langle c \left| \sum_{k=1}^{3V} \lambda_k \right|^2 \right\rangle$$

$$\xi = e^{-\mu/T} > \max_{|\lambda| < 1} |\lambda| = e^{-m_{\pi}/(2T)}$$

Low T and small m limit.

$$\det \Delta = C_0 \xi^{-N_{\text{Nred}}/2} \prod_{|\lambda_n|<1} \left(e^{-\mu/T} + l_n^{-N_t} e^{i\theta_n} \right) \prod_{|\lambda_n|>1} \left(e^{-\mu/T} + l_n^{N_t} e^{i\theta_n} \right)$$
$$= C_0 \prod_{|\lambda_n|>1} \lambda_n, \quad \text{for } N_t \to \infty, \ \xi > \max_{|\lambda|<1} |\lambda|$$

Low-T limit

a. small μ det $\Delta(\mu) = C_0 \prod_{i=1}^{N_r/2} \lambda_n^L$

a. large μ

 $\det \Delta(\mu) = C_0 \xi^{-N_r/2} \det Q$

$$= e^{2N_c N_s^3 \mu/T} \prod_{i=1}^{N_t} \det(B_i r_+ - 2\kappa r_-) \left\langle n \right\rangle = 2N_c N_f$$

- Quarks move on a fixed time slice, there is no propagation in t-direction(t-link vanishes)
- ✓ Z3 invariant

Quarksev Svaren not neededence, Nara, December13-16,

 $\langle n \rangle = 0$

Buckup Slides

Quarks to Universe in Computational Science, Nara, December13-16, 2012

È

S

potential

- High T, small µ (µ/T<1)
 - sign fluctuation is mild
 - $-\mu$ -dependence is
 - Loweasufiante µ
 - S/N ratio is small

 Calculation of quantities at low T & finite µ requires large statistics.

Approach to low temperature

- Chemical potential is included in the fermion determinant, $(\det \Delta)^{N_f} = \int \mathcal{D}[q\bar{q}]e^{-S_F}$
- Calculation of det D seems to be inevitable at low temperatures, e.g.
 - slow convergence of Taylor series
 - small S/N ratio
- A reduction formula provides

 a way to evaluate det D for large Nt
 physical implications & applications