

Current Status of Massive Star Evolution

Takashi Yoshida Hideyuki Umeda, Koh Takahashi, Shinpei Okita Department of Astronomy, University of Tokyo

Quarks to Universe in Computational Science (QUCS2012) 13th December, 2012, Nara Prefectural New Public Hall

Current Status

- **A03: Astrophysics Project**
- **Massive star model** (TY & Umeda 2011, Umeda, TY & Takahashi 2012)
 - Wide ranges of main-sequence (MS) mass *M*_{MS} and metallicity *Z*
 - Effect of stellar rotation
- Current status
 - Very massive stars (M_{MS} ≥ 100 M_☉) as a progenitor for super-luminous supernova (SLSN)
 - Pulsational pair-instability (PPI) supernova
 - Aspherical core-collapse SNe from very massive stars
 - Progenitor for electron-capture supernova (Poster A03-P27: Takahashi, TY & Umeda)
 - Evolution of rotating massive star (test calculation)

 $M_{\rm MS}$ =15 M_{\odot} , Z=0.02, $v_{\rm rot}$ =200 km/s star model

Massive Stars as Progenitors for Supernovae

Massive Stars Progenitors for supernovae

Progenitor structure is important for supernova explosions.

Stellar Type and Final Mass of Massive Stars

CO Core Mass of Very Massive Stars

Some SLSNe may have evolved from very massive stars.

Stellar evolution calculation for $M_{\rm MS} = 100 - 500 M_{\odot}$ and Z=0.004.

(TY & Umeda 2011, MNRAS 412, L78)

Three cases of mass loss rates \dot{M}_{A} : standard (\dot{M}_{st}) $\dot{M}_{B} \sim 1.5 \dot{M}_{st}$ (WR stars: Crowther 2007) $\dot{M}_{C} = 0.5 \dot{M}_{st}$ (e.g., Discussion in Hirschi 2008, Pulse et al. 2008)

■ Core-collapse SN Ic with $M(^{56}Ni)>3M_{\odot}$ = A: 110 < M_{MS} < 270 M_{\odot}

SLSN 2007bi is a candidate of $\sim 100 M_{\odot}$ pair-instability SN(Gal-Yam et al. 2009)

 $M_{\rm MS}$ > 300 M_{\odot} with small mass loss (C)

Pulsational Pair-Instability

Pulsational pair-instability occurs in stars with $M_{\rm CO} \sim 40-60 M_{\odot}$ (e.g., Heger & Woosley 2002, Umeda & Nomoto 2008)

After some pulsations, the star collapses to become SN.

Eruptive mass loss will be included in a future study.

(e.g., Woosley et al. 2007, Chatzopoulos & Wheeler 2012)

Aspherical SN Explosion of Very Massive Stars

• SLSN 2007bi $M({}^{56}Ni) = 3.5 - 7.4 M_{\odot}$ (TY, Okita & Umeda, in prep.)

Pair-instability SN or Core-collapse SN?

 Explosive nucleosynthesis during aspherical core-collapse SN explosion Solid lines: M_f=61.1M_☉, M_{CO}=56.2M_☉, E=7×10⁵² erg (M_{MS}=250M_☉) Dashed lines: M_f=43.1M_☉, M_{CO}=38.8M_☉, E=5×10⁵² erg (M_{MS}=110M_☉)

Progenitor for Electron-Capture Supernova

Lower mass limit of supernova Electron-capture SN (ECSN)

Evolution of a progenitor for ECSN (Takahashi, TY & Umeda, in prep.) Propagation of deflagration front

Material behind the front becomes to nuclear statistical equilibrium.

Rotating Star Model

Mass coordinate as isobar $M_r \rightarrow M_P$ (e.g., Endal & Sofia 1976, Meynet & Maeder 1997, Heger, Langer, & Woosley 2000)

Radius *r*_P is determined from the volume enclosed by isobar surface

<u>15 M_{\odot} , Z=0.02 v_{rot} =200km s⁻¹ Star</u>

Summary

- Massive star evolution model (TY & Umeda 2011, Umeda, TY & Takahashi 2012)
 - Very massive stars ($M_{\rm MS} \gtrsim 100 M_{\odot}$) for super-luminous SNe (SLSNe)
 - 0.001 Z<0.01 WO stars with large CO core Possibility for Type Ic SLSNe

Z≤0.001 → Type II(n) SLSNe or Type Ic SLSNe through PPI

- Aspherical core-collapse SN explosion for SLSN 2007bi
 110, 250M_o models with large explosion energy
 ⁵⁶Ni amount consistent with SN 2007bi
- Evolution of ONe core to become ECSN Up to deflagration by the ignition of O-burning See Poster A03-P27, Takahashi, TY & Umeda
- Rotating massive star model

Test of 15 M_{\odot} , $v_{\rm rot} = 200$ km/s model up to the onset of core-collapse