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Purpose
I report the updated result for aµ(QED) (T.Aoyama, M.H T.Kinoshita

and M.Nio, Phys. Rev. Lett. 109, 111808 (2012))

1011 × aµ(QED) = 116 584 718.951 (80) .

The new ingredients are summarized as follows;

(1) compelete calculation of 5-loop (10th-order) coefficient, a
(10)
µ

(2) improvement of precision of 4-loop (8th-order) calculation, a
(8)
µ

(3) recalculation of lower-order mass-dependent terms using the
latest values of mµ/me, mµ/mτ found in P. J. Mohr, B. N. Taylor

and D. B. Newell, arXiv:1203.5425 [physics.atom-ph]

In particular, (1) plays the essential role in the substantial
reduction of its uncertainty;

δaµ(QED)[ignorance on a(10)
µ ] = O(1) × 10−11

⇒ δaµ(QED) = 0.08 × 10−11 ≪ δaµ(next expr.) = O(1) × 10−11 .



Content

• I introduce the basic features of the muon g − 2,

• I overview the current status of the muon g − 2, in particular
of the QED contribution aµ(QED),

• I explain a particular numerical approach to the high-order
perturbative QED calculation.

• The brief overview is given in
T. Aoyama, M. H., T. Kinoshita and M. Nio,

Prog. Theor. Exp. Phys. 2012, 01A107 (2012) .



What is g − 2 ?

• A charged massive particle ψ becomes magnetized in the form
of magnetic dipole moment, if it has non-zero spin

µψ = gψ
e~

2mψc
s ,

where gψ is g-factor.

• If ψ has spin s = 1
2 , gψ|classically = 2.

• The deviation aψ ≡ (gψ−2) /2, called anomalous magnetic
dipole moment or “g − 2”, is a quantity predictable in any
renormalizable quantum field theory.

• Here, we focus on the muon g − 2 (aµ).

• The status for ae is described in backup slides.



Why is muon g − 2 ?

• The experimentally measured value, aµ(exp), of aµ consists of
the quantum-mechanical dynamics of the standard model,
aµ(SM), and possibly those from extra structures, aµ(new);

aµ(exp) = aµ(SM) + aµ(new) .

γ

µ

Standard Model

Extra Structures

• In order to explore the existence of aµ(new), we ask if
aµ(SM) differs from aµ(exp);

aµ(exp) − aµ(SM) = aµ(new) 6= 0 ?



What is QED contribution ?

• Standard model contribution aψ(SM) (ψ = µ or e) consists of
three types of contributions;

aψ(SM) = aψ(QED) + aψ(QCD) + aψ(weak) .

• QED contribution, aψ(QED), is calculated by QED with
photons and charged leptons (e, µ, τ) only.

• QCD contribution aψ(QCD) is calculated by QCD + QED
with purely leptonic contribution (≡ aψ(QED)) subtracted.

• aψ(weak) consists of all the others, i.e., the diagrams with at
least one W boson, Z boson or Higgs boson.



Current status of muon g − 2

We have 2.8σ discrepancy between the measured value (aµ(exp))
and the theory of the muon g − 2 (aµ(SM));

1011 × aµ(exp) = 116 592 089 (63)

1011 × aµ(SM) = 116 591 840 (59)

1011 × {aµ(exp) − aµ(SM)} = 249 (87)

aµ is more sensitive to the still-unknown particle(s)/interaction(s)
than ae, by (mµ/me)

2 ≃ 40000, but also to QCD;

1011 × aµ(QCD) = 6 967 (59) .

The uncertainty of aµ(SM) is now saturated by that of aµ(QCD),
due to the significant reduction of the uncertainty of aµ(QED) this
year: 1011 × δaµ(QED) = 0.080 !



Current status of muon g − 2

• New experiments (Fermilab(E989), J-PARC(E34)) are planned
to achieve the precision 1011 × δaµ(next exp) = O(1);

1011 × aµ(LO. had. v.p.) = 6 949.1 (42.8)

1011 × aµ(NLO. had. v.p.) = −98.4 (0.8)

1011 × aµ(had. lbyl) = 116 (40)

1011 × aµ(QCD) = 6 967 (59)

1011 × aµ(SM) = 116 591 840 (59)

1011 × {aµ(exp) − aµ(SM)} = 249 (87)

1011 × δaµ(next exp) = O(1)

• aµ(LO. had. v.p.) requires knowledge on QCD with precision
of O(0.1)% .
Its evaluation mostly relies on the high precision experiment of
σ(e+e−(s) → hadrons).



Current status on muon g − 2
• It is indispensable to compute
aµ(had. lbyl) ∼ O(100) × 10−11 ∼ O(aµ(exp) − aµ(SM)) by
means of lattice QCD simulation .

µ−

QCD

• Improvement of precision of aµ(QED) and aµ(exp) assumes
development in aµ(QCD).



Requirement for aµ(QED) from δaµ(next exp)

• What should we do to realize
δaµ(QED) . δaµ(next exp) = O(1) × 10−11 ?

• To what order 2n of perturbative expansion is necessary to
know,

aµ(QED) =
∞
∑

n=1

a(2n)
µ

(α

π

)n

,

where QED predicts a
(2n)
µ ?

• Perturbative aspects of QED in aµ(QED) is quite different
from those in ae(QED);

ae(QED) = 0.5 ×
α

π
+ O(1) ×

“α

π

”2
+ O(1) ×

“α

π

”3

+ O(1) ×
“α

π

”4
+ O(1) ×

“α

π

”5
+ · · · .

aµ(QED) = 0.5 ×
α

π
+ O(1) ×

“α

π

”2
+ O(10) ×

“α

π

”3

+ O(100) ×
“α

π

”4
+O(1, 000) ×

“α

π

”5
+ · · · .



Requirement for aµ(QED) from δaµ(next exp)

• The rough estimate of orders of magnitude will show that the
10th order may also be relevant;

a(8)
µ ×

(α

π

)4
= O(100) × 10−11 ∼ aµ(exp) − aµ(SM) ,

a(10)
µ ×

(α

π

)5
= O(1) × 10−11 ∼ δaµ(next exp) .

• These are exactly the reasons why

• we improve the numerical precision of a
(8)
µ (⇒ O(0.01)% !!!) ,

• we try to compute a
(10)
µ ,

over about 8 years !



2012 Update of aµ(QED)

Table: aµ(QED) at each order 2n, scaled by 1011 (T. Aoyama, M. H.,

T. Kinoshita and M. Nio, Phys. Rev. Lett. 109, 111808 (2012) )

order 2n using α(Rb) using α(ae)

2 116 140 973.318 (77) 116 140 973.213 (30)
4 413 217.6291 (90) 413 217.6284 (89)
6 30 141.902 48 (41) 30 141.902 39 (40)
8 381.008 (19) 381.008 (19)
10 5.0938 (70) 5.0938 (70)

sum 116 584 718.951 (80) 116 584 718.846 (37)

The complete calculation of a
(10)
µ eliminates the uncertainty

∼ O(1) × 10−11 ∼ δaµ(next exp), which has been present unless it is done.

Now, the uncertainties in aµ(QED) come mostly from

1. statistical uncertainty in the Monte Carlo integration of the 8th-order terms,

2. uncertainty in the fine structure constant α (2n = 2).



Perturbative features of aµ(QED) and rough estimate

I next

• estimate rough orders of magnitude of a
(2n)
µ for 2n ≥ 6,

aµ(QED) = 0.5 ×
α

π
+O(1) ×

(α

π

)2
+O(10) ×

(α

π

)3

+O(100) ×
(α

π

)4
+O(1, 000) ×

(α

π

)5
+ · · · .

• show the validity of our numerical result for the 8th and 10th
order terms;

a(8)
µ = 130.879 6 (63) ,

a(10)
µ = 753.29 (1.04) .



Perturbative features of aµ(QED) and rough estimate

• Since mµ > me while mµ < mτ , a
(2n)
ψ is dominated by

A
(2n)
2 (mµ/me) in the following decomposition:

a(2n)
µ = A

(2n)
1 +A

(2n)
2

(

mµ

me

)

+A
(2n)
2

(

mµ

mτ

)

+A
(2n)
3

(

mµ

me
,
mµ

mτ

)

,

• The term A
(2n)
1 is a pure number, called mass-independent

term. A
(2n)
1 universally contributes to all a

(2n)
l , and is

calculated by QED with electron only.

• The term A
(2n)
2

(

mµ

me

)

represents the contribution of all

Feynman diagrams with at least one e-loop but with no

τ -loop. Similarly for A
(2n)
2

(

mµ

mτ

)

.

• A
(2n)
3

(

mµ

me

,
mµ

mτ

)

represents the contribution of all Feynman

diagrams with both e-loop(s) and τ -loop(s).



Perturbative features of aµ(QED) and rough estimate

At the sixth order (n = 3), aµ receives large contribution through
the light-by-light scattering due to virtual e−e+, aµ(lbyl6e).

µ−

e−



Perturbative features of aµ(QED) and rough estimate

• The sixth-order light-by-light scattering contribution
aµ(lbyl6e) is given as follows;

aµ(lbyl6e) ≃
(α

π

)3
×

{

H ln

(

mµ

me

)

+ c

}

,

ln

(

mµ

me

)

∼ 5.33 , H =
2

3
π2 = 6.57973627 . . . ,

c ≃ −2H (numerically) ⇒ {. . .} ≃ H × (5.33 − 2) ≃ 15 .

(The leading logarithmic approximation, ≃ 35, is valid up to a
factor.)
We thus have

(α

π

)3
× a(6)

µ ≃ aµ(lbyl6e) = O(10) ×
(α

π

)3
.



Perturbative features of aµ(QED) and rough estimate
• π2 arises in the following manner;

• For g − 2, O(α3) interactions must consist of two Coulombic
interactions (γµ) and one hyperfine interaction (σµν q

ν).
• These Coulombic interactions act statically, yielding
iπδ(k0) × iπδ(q0).

• The enhancement of aµ(lbyl6e) is caused by the dynamics
forming a bound state of a µ− and a e+, called muonium
(A.S.Yelkhovsky, Sov.J.Phys.49, 654 (1989)).

µ−

e−



Perturbative features of aµ(QED) and rough estimate

• At the 8th-order,

µ− e−
e−

will be dominant and is estimated as

A
(8)
2

„

mµ

me

«

≃ A
(6)
2

„

mµ

me

; l-l

«

×



2

3
ln

„

mµ

me

«

−
5

9

ff

× 3

≃ 180 .



Perturbative features of aµ(QED) and rough estimate
• Our computed result A

(8)
2

“

mµ

me

”

= 132.685 2 (60) is roughly identical with the

estimation ∼ 180.

• At the 10th order, the contribution of the diagrams (Set VI(a)) obtained by
inserting two second-order electron-loop-induced vacuum polarizations in the
six-order light-by-light scattering diagrams will be dominant :

A
(10)
2

„

mµ

me

«

≃ A
(6)
2

„

mµ

me

; l-l

«

×



2

3
ln

„

mµ

me

«

−
5

9

ff2

× 6

≃ 1000 ,

which gives

a
(10)
µ ×

“α

π

”5
≃ 1000 ×

`

6.76 × 10−14
´

≃ 6.8 × 10−11
`

δaµ(exp) = 63 × 10−11
´

.

• Our result obtained by complete calculation is consistent with rough estimate

A
(10)
2

„

mµ

me

«

[Set VI(a)] = 629.141 (12) .

A
(10)
2

„

mµ

me

«

= 742.18 (87) .



Numerical Approach to QED contribution

• We employ the parametric integral formulation, whose basic
part was described in P.Cvitanovic and T.Kinoshita, Phys. Rev. D 10,

3978 (1974).

• It deals with the integral on the Feynman parameter space.

• It intends to subtract UV divergence at the numerical level.

• The numerical subtraction is possible only if divergences are
subtracted in a pointwise way by the terms that are expressed
as the integrands on the same Feynman parameter space;

∫

[dz]







fbare
G (z)−

∑

F

fUV
F (z)







,

where z = {zi} are Feynman parameters, and the sum is
taken over all normal forests F of G.



Numerical Approach to QED contribution

• The integral must be constructed separately for the individual
vertex diagrams, or for a set of vertex diagrams (, which share
similar UV-divergent structure) which are related via a
Ward-Takahashi (WT) identity to a single self-energy-like

diagram G;

+ +
WT
⇐⇒ ≡ G .

• The individual integral in general contains infrared (IR)
divergence. The numerical calculation can be done for the
quantity which are free from both UV and IR divergences;

∆MG =

∫

[dz]







fbare
G (z) −

∑

F

fUV
F (z)−

∑

E

f IR
E (z)







.



Numerical Approach to QED contribution

• The UV subtraction terms are not the ones required from the
on-shell renormalization condition. We thus have to add the
residual renormalization terms {Rk} to get the contribution to

a
(2n)
l from the gauge-invariant subset S of diagrams

(IR-divergence cancels among them)

a
(2n)
l [Set S] =

∑

G∈S

∆MG +
∑

k

Rk .

Our construction of fUV
F

(z) and f IR
E

(z) guarantees that every
Rk is given in terms of finite quantities at lower-order.

• The integration has been carried out for ∆MG and the
constituents of Rk with help of adaptive Monte Carlo
integration routine, vegas, on RIKEN supercomputer
systems, RSCC and RICC.



Strategy for calculation of 10-th order QED contribution

• The calculation of a
(8)
l (l = e, µ) required about 20 years

(although it is corrected later on).

• The number (12678) of Feynman diagrams at the 10th order
is 14 times larger than that (891) at the 8th order.

• Writing the numerical program for a 10th-order Feynman
diagram correctly is much harder than for the 8th-order.

• Thus, the 10th-order calculation was considered to need
500 ∼ 1000 years to complete.

• We have completed the 10th-order calculation in less than 10
years.



Strategy for calculation of 10-th order QED contribution

• The most difficult gauge-invariant subset is Set V consisting
of quenched-type (q-type) diagrams:

1. The number of q-type diagram at the 10th order is 6354.
2. A q-type diagram has complicated structure of UV and IR

singularities (, and thus requires many subtraction terms).
3. There are tenth-order q-type diagrams having linear IR

subdivergence. (The corresponding subtraction terms can no
longer be constructed just in the power-counting scheme.)



Strategy for calculation of 10-th order QED contribution

• If we write 6354 programs manually, mistakes will be
scattered over those programs randomly.

• If we write a code generator which produces 6354 programs
(to calculate ∆MG for G ∈ Set V), mistakes will be strongly
correlated, and it is only necessary to manage the code
generator itself.

• The crucial point to successfully implement the code
generator is the invention of a systematic scheme, which
enables to subtract linear and higher IR singularities (T.Aoyama,

M.H., T.Kinoshita and M.Nio, Nucl. Phys. B 796 (2008) 184.)

• Quadruple precision is needed
• to realize subtraction of linear IR divergence,

• to achieve the precision O(0.01)% for a
(8)
e .



Strategy for calculation of 10-th order QED contribution

• A code generator for q-type diagrams was implemented for
arbitrary order 2n of perturbation. We have tested its validity
for 2n = 4, 6 and 8.

• We found the incorrectness of the previous result for A
(8)
1

(T.Aoyama, M.H., T.Kinoshita and M.Nio, Phys.Rev.Lett. 99, 110406 (2007));

A
(8)
1 (old) = −1.7203 ,

A
(8)
1 (new) = −1.9106 ,

which affects to al as

al

[

A
(8)
1 (old)

]

= −5.0313 × 10−11 ,

al

[

A
(8)
1 (new)

]

= −5.5620 × 10−11 .

This causes a significant change to ae in light of its
experimental precision, δae(exp) = 0.028 × 10−11.



”Modern history” of α−1(ae)
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Strategy for calculation of 10-th order QED contribution

• We have developed code-generators for several subsets of
diagrams other than quenched-type diagrams.

• Some tenth-order diagrams were calculated analytically;
• A. L. Kataev, Phys. Lett. B 284, 401 (1992) [Erratum-ibid. B

710, 710 (2012)].
• S. Laporta, Phys. Lett. B 328, 522 (1994).
• J. -P. Aguilar, D. Greynat and E. De Rafael, Phys. Rev. D 77,

093010 (2008).
• P. A. Baikov, K. G. Chetyrkin and C. Sturm, Nucl. Phys. Proc.

Suppl. 183, 8 (2008).

These works provided us to test the validity of our results for
the corresponding contributions.



Summary and future perspective

• The calculation of 12, 672 number of Feynman diagrams at
the 10th order substantially reduced the uncertainty in
aµ(QED), which is now well below the expected uncertainty
in the next-generation experiment.

• However, it is a reasonable question: Is our result correct ?
• Even the eight-order term (∼ aµ(SM) − aµ(exp)), has been

computed only by us.
• We have seen the consistency with rough orders of estimate for

a
(8)
µ and a

(10)
µ .

• Check for a
(8)
µ by third persons is an important subject.

• The Harvard group is now preparing the new measurement of
ae. Accordingly, the reduction of the uncertainty of ae(QED)
is strongly requested. We need

• optimized quadruple precision arithmetics,
• more sophisticated adaptive Monte Carlo integrator

(c.f. R.Arthur and A.D.Kennedy, arXiv:1209.0650 [physics.comp-ph] ).



Standard model prediction of electron g − 2
The brand new value of the electron g − 2 is (Aoyama, M. H., Kinoshita,

Nio, Phys. Rev. Lett. 109, 111807 (2012) for ae(QED))

1012 × ae(QED) = 1159 652 180.07 (6)8th (8)10th (77)α(Rb)

1012 × ae(QCD) = 1.68 (3)

1012 × ae(weak) = 0.0297 (5)

1012 × ae(SM) = 1159 652 181.78 (6)8th (8)10th (77)α(Rb)(3)QCD

1012 × ae(exp) = 1159 652 180.73 (28)

Here

• The numerals in a parenthesis denote the uncertainty in the
final few digits.

• The above uses α(Rb), which was obtained by the recent
determination of h/mRb via optical lattice technique
(R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben,

Phys. Rev. Lett. 106, 080801 (2011)).



Physical implication of electron g − 2

• Since ae(QED) occupies 99.999 999 85 % of ae, the
comparison of ae(SM) with ae(exp) provides us with a
precision test of QED, at present.

• The precision of ae(QED) can be systematically improved in
perturbation theory of QED;

ae(QED) =
∞
∑

n=1

a(2n)
e ×

(α

π

)n

,

where QED predicts a
(2n)
e (with help of lepton mass ratios for

2n ≥ 4).



8th-order QED contribution

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V

Figure: Typical vertex diagrams representing 13 gauge-invariant subsets
contributing to the eighth-order lepton g−2 (891 diagrams in total).



10th-order QED contribution

The new ingredients in the update of ae(QED) in 2012 are

1. completion of computation of 12, 672 number of 5-loop

Feynman diagrams to get a
(10)
e ,

2. improvement of numerical precision of a
(8)
e ,

3. improvement of mass-dependent terms at the lower orders
using the latest values of me/mµ, me/mτ found in P. J. Mohr,

B. N. Taylor and D. B. Newell, arXiv:1203.5425 [physics.atom-ph] .



Physical implication of electron g − 2

• Due to the above efforts, the uncertainty in ae(SM) is now
dominated by that of α(Rb);

1012 · ae(SM) = 1159 652 181.78 (6)8th (8)10th (77)α(Rb)(3)QCD ,

1012 · ae(exp) = 1159 652 180.73 (28) .

• We suppose that no extra contribution exists in ae(exp).

• We can get α(ae) by solving ae(SM, α) = ae(exp) with
unknown α.

• Check of compatibility of α(ae) with the others, such as
α(Rb), α(Cs), α(q-Hall), α(JC), . . . , provides us with a
cross-sectional understanding on various physical phenomena.


