Pion form factors in the ε regime

SAKA UNIVERSITY

SAKA UNIV

Hidenori Fukaya (Osaka Univ.) for JLQCD collaboration : S. Aoki, HF, S. Hashimoto, T. Kaneko, H. Matsufuru, J. Noaki, T. Onogi, N. Yamada

arXiv:1211.0743

1. Introduction

For calculation of pion form factors, we need

- 1. Very small pion mass
- 2. Good control of chiral symmetry
 - -> large chiral logarithm $~~\sim~$]

$$\ln m_{\pi}^2$$

COSAKA UNIVER

 $\frac{\text{We simulate (exactly chiral symmetric)}}{\text{overlap quarks with } m_{ud} \sim 3 \text{ MeV.}}$

1. Introduction

1. Introduction

JLQCD (& TWQCD) project [2006-2012]

= QCD with overlap quarks (exact chiral sym.).

 $\begin{array}{ll} 1/a \sim 1.8 \; {\rm GeV}, \quad {\rm L} \ \sim 1.8 \; {\rm fm} \\ {\rm p \ regime \ lattices} : m_{\pi} = 290\text{-}780 \; {\rm MeV} \\ \hline \pmb{\varepsilon} \ \ {\rm regime \ lattice} : m_{\pi} \ \sim 100 \; {\rm MeV} \\ m_{\pi}L \sim 0.9 \Rightarrow {\rm Large \ finite \ V \ effects} \end{array}$

COSAKA UNIVER

1. Introduction

Good chirality = high numerical cost

<u>quark action</u>	<u>Chiral</u> symmetry	<u>Discretizat</u> ion error	Numerical cost	Volume size
Overlap	Exact	O(a²)	Very expensive	~2fm
Domain-wall	Weakly broken	O(a ²)	Expensive	~4fm
Wilson	Broken	O(a)	Marginal	~5fm
Staggered	Broken (U(1) remains)	O(a ²)	Cheap	~6fm

JLQCD = Small volume QCD...

5

SAKA UNIVE

6

SAKA UNIVER

1. Introduction

COSAKA UNIVER

COSAKA UNIVER

1. Introduction

Finite volume = Pion physics.

Correlation length (1/M) of QCD particles

Pions(~140MeV) ~ 1.4fm Kaons(~500MeV)~0.4fm Rho (~800MeV)~0.26fm Proton (~1GeV) ~0.2fm $e^{-M_{\pi}L} = 0.03 - 0.25$ $e^{-M_{\rho}L} < 0.0005$ (for 2fm < L < 4fm)

At $E \sim p \lesssim 200~{\rm MeV},$ QCD = pion (+ kaon) theory. Namely, finite volume correction in QCD =

pion theory (chiral perturbation theory) weakly coupled = analytically calculable.

1. Introduction

What's new in this talk ? Automatic cancellation of finite V effects

1. non-zero momenta

- 2. take an appropriate ratio
- -> We can eliminate LO finite V effects (= we can forget about Bessel functions) even in the ε regime.

=> Pion form factors "

CONTENTS

SAKA UNIVER

OSAKA UNIV

- ✓ 1. Introduction
 - 2. Pion effective theory
 - 3. 3pt functions at finite V
 - 4. Preliminary lattice results
 - 5. Summary

2. Pion effective theory

(perturbative) interactions

= hybrid system of matrix model and massless bosonic fields

11

COSAKA UNIVERS

OSAKA UNIVER

2. Pion effective theory

What is the ε regime ?

In the p regime, the vacuum is fixed:

$$U(x) = \mathbf{1} \exp\left(i\frac{\sqrt{2}\pi(x)}{F}\right), \quad \in SU(N_f)$$

but near the chiral limit at finite V, $M_{\pi}L < 1$ vacuum= zero-mode = dynamical variable

$$U(x) = U_0 \exp\left(i\frac{\sqrt{2}\pi(x)}{F}\right),$$

 U_0 should be non-perturbatively treated.

$$\rightarrow \varepsilon$$
 regime

2. Pion effective theory

2pt functions in ε expansion of ChPT Before d³x integral

$$\langle P(x)P(0)\rangle = A + B \sum_{p'\neq 0} \frac{1}{V} \frac{e^{ip'x}}{p'^2} + C \sum_{p'\neq 0} \frac{e^{ip'x}}{p'^4} + \cdots$$

$$A,B,C\cdots$$
 : matrix integrals (Bessel functions of $m\Sigma V$)
$$\sum_{p'\neq 0}(\cdots) \quad : \text{ non-zero mode's }$$

2. Pion effective theory

2pt functions in ε expansion of ChPT After d³x integral \rightarrow power function of t.

$$\frac{1}{L^3} \int d^3x \langle P(x)P(0) \rangle = A + B\frac{1}{V} \left[\frac{1}{2} \left(t - \frac{T}{2} \right)^2 - \frac{1}{24} \right] + C[\cdots] + \cdots$$

(with periodic boundary conditions) cf. large V result:

$$B'\cosh(m_{\pi}(t-T/2))$$

🗢 OSAKA UNIVE

3. 3pt functions at finite V

🗘 OSAKA UNIVE

2pt functions in ε expansion of ChPT Ratio of 2pt functions with $\mathbf{p} \neq 0$

3. 3pt functions at finite V

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{2pt functions in } \boldsymbol{\varepsilon} \ \text{expansion of ChPT} \\ \text{After } d^3 \textbf{x} \ \text{integral with } \mathbf{p} \neq 0 \ \ (\text{w/ periodic b.c.}) \end{array} \\ \\ \begin{array}{l} \frac{1}{L^3} \int d^3 x e^{-i \mathbf{p} x} \langle P(x) P(0) \rangle = \frac{1}{L^3} \int d^3 x e^{-i \mathbf{p} x} A + B \sum_{p_0'} \frac{1}{V} \frac{e^{-i p_0' t}}{p_0'^2 + \mathbf{p}^2} + \cdots \\ \\ = 0 + \frac{B}{2E(\mathbf{p}) L^3 \sinh(E(\mathbf{p}) T/2)} \cosh(E(\mathbf{p})(t - T/2)) + \cdots, \end{array} \\ \\ \text{where } E(\mathbf{p}) = |\mathbf{p}| \ \ \text{. the same form as the p-regime :} \\ \\ B' \cosh(\sqrt{|\mathbf{p}|^2 + m_\pi^2}(t - T/2)) \end{array} \\ \\ \\ \text{But Bessel functions are still contained in } B \ \ . \end{array}$

5. 3pt functions at finite V $Spt functions in \varepsilon regime C_{PV_0P}^{3pt}(\Delta t, \Delta t'; \mathbf{p}_i, \mathbf{p}_f) = B^{3pt}(m\Sigma V) [E(\mathbf{p}_i) + E(\mathbf{p}_f)] F_V(q^2) \xrightarrow{(conn)} (conn) \\ \times \cosh(E(\mathbf{p}_i)(\Delta t - T/2)) \cosh(E(\mathbf{p}_f)(\Delta t' - T/2)) + \cdots \\ R_V(t,t'; |\mathbf{p}_i|, |\mathbf{p}_f|, q^2) \equiv \frac{\frac{1}{N_{|\mathbf{p}_i|, |\mathbf{p}_f|}} \sum_{\substack{n \neq 1 \\ N_{|\mathbf{p}_i|, |\mathbf{p}_f|, q^2}} \frac{C_{PP}^{3pt}(t, t'; \mathbf{p}_i, \mathbf{p}_f)}{\left(\frac{1}{N_{|\mathbf{p}_f|}^{2pt}} \sum_{\substack{n \neq 1 \\ E(\mathbf{p}_f)}} C_{PP}^{2pt}(t, \mathbf{p}_f)\right) \left(\frac{1}{N_{|\mathbf{p}_f|}^{2pt}} \sum_{\substack{n \neq 1 \\ E(\mathbf{p}_f)}} C_{PP}^{2pt}(t, \mathbf{p}_f)\right) \\ = B^{3pt/2pt}(m\Sigma V) F_V(q^2) + \cdots$

3. 3pt functions at finite V

OSAKA UNIVE

SAKA UNIV

Correlator with zero momentum The constant term can be cancelled by

 $\Delta_{t'} C_{PVP}^{3\text{pt}}(t,t';\mathbf{p}_i,0) \equiv C_{PVP}^{3\text{pt}}(t,t';\mathbf{p}_i,0) - C_{PVP}^{3\text{pt}}(t,t_{\text{ref}};\mathbf{p}_i,0)$

 $\Delta_t \Delta_{t'} C_{PVP}^{3\text{pt}}(t,t';0,0) \equiv C_{PVP}^{3\text{pt}}(t,t';0,0) - C_{PVP}^{3\text{pt}}(t,t_{\text{ref}};0,0) - C_{PVP}^{3\text{pt}}(t,t_{\text{ref}};0,0) + C_{PVP}^{3\text{pt}}(t_{\text{ref}},t';0,0) + C_{PVP}^{3\text{pt}}(t_{\text{ref}},t_{\text{ref}};0,0)$

3. 3pt functions at finite V

🗘 OSAKA UNIVE

OSAKA UNIVER

 $\begin{aligned} & \text{Ratio of 3pt functions} \\ & F_V(t, t', q^2) \equiv \frac{R_V(t, t'; |\mathbf{p}_i|, |\mathbf{p}_f|, q^2)}{R_V^2(t, t'; 0, 0, 0)} \Big(\text{or } \frac{R_V^1(t, t'; |\mathbf{p}_i|, 0, q^2)}{R_V^2(t, t'; 0, 0, 0)} \Big) \\ & = F_V(q^2) + \mathcal{O}\left(\frac{1}{4\pi F^2 L^2}\right) \\ & \text{LO finite V effect is eliminated !} \\ & \left(\begin{array}{c} \text{Cf. in the p regime, this ratio method is conventionally used} \\ \text{for canceling the smearing effect, renormalization and so on.} \\ & F_V(t, t'; q^2) \\ & = \frac{R_V(t, t'; |\mathbf{p}_i|, |\mathbf{p}_f|, q^2)}{R_V(t, t'; 0, 0, 0)} \\ & = F_V(q^2) + \mathcal{O}\left(e^{-m_\pi L}\right) \\ & \text{[Hashimoto et al. 2000]} \end{aligned} \end{aligned}$

3. 3pt functions at finite V

Correlator with zero momentum The both ratios

$$R_{V}^{1}(t,t';|\mathbf{p}_{i}|,0,q^{2}) \equiv \frac{\frac{1}{N_{|\mathbf{p}_{i}|}^{3\text{pt}}}\sum_{\text{fixed}|\mathbf{p}_{i}|,q^{2}} \left(C_{PVP}^{3\text{pt}}(t,t';\mathbf{p}_{i},0) - C_{PVP}^{3\text{pt}}(t,t_{\text{ref}};\mathbf{p}_{i},0)\right)}{\frac{1}{N_{|\mathbf{p}_{i}|}^{2\text{pt}}}\sum_{\text{fixed}|\mathbf{p}_{i}|}C_{PP}^{2\text{pt}}(t,\mathbf{p}_{i})\left[-\Delta_{t'}\partial C_{PP}^{2\text{pt}}(t',0) + E(\mathbf{p}_{i})\Delta_{t'}C_{PP}^{2\text{pt}}(t',0)\right]}}$$

$$R_{V}^{2}(t,t';0,0,0) \equiv \frac{\Delta_{t}\Delta_{t'}C_{PVP}^{3\text{pt}}(t,t';0,0)}{-\Delta_{t}C_{PP}^{2\text{pt}}(t,0)\Delta_{t'}\partial C_{PP}^{2\text{pt}}(t',0) - \Delta_{t}\partial C_{PP}^{2\text{pt}}(t,0)\Delta_{t'}C_{PP}^{2\text{pt}}(t',0)}$$

$$= B^{3\mathrm{pt}/2\mathrm{pt}}(m\Sigma V)F_V(q^2) + \cdots$$

3. Preliminary lattice results

Summary of numerical simulations

Iwasaki gauge action with β =2.30 2+1 dynamical overlap quarks 1/a ~ 1.759 GeV, L=16³48 (L~1.8 fm) m_{ud} =0.002(~3 MeV), m_s=0.08 Q=0 fixed Smearing is used for PS operators $\phi_s(\mathbf{r}) = e^{-0.4r}$ All-to-all propagators with 120 exact low-modes and noise method for the high modes. Dispersion relation is used for E with $m_{\pi} = 98(5)$ MeV 148 samples from 2500 trj.

3. Preliminary lattice results

COSAKA UNIVER

3. Preliminary lattice results

OSAKA UNIVERS

OSAKA UNIVERSI

3. Preliminary lattice results

NOTES

- 1. We DON'T need Bessel functions in the analysis.
- 2. The result still contain NLO

 $\sim \frac{1}{4\pi F^2 V^{1/2}} \sim 7\% ~~ {\rm finite~V~effects.} \label{eq:V1/2}$ To do list :

- 1. Check the stability of q^2 fit.
- 2. Check the dispersion relation.
- 3. 1-loop ChPT corrections [HF & T. Suzuki, in progress]
- 4. Twisted boundary conditions.
- 5. Expand the volume in our new simulations.

4. Summary

What's new in this talk : Automatic cancellation of finite V effects

- non-zero momenta (or subtraction)
 take an appropriate ratio
- -> We can eliminate LO finite V effects (= we can forget about Bessel functions) even in the ε regime.

=> Pion form factors 26

SAKA UNIV

Achknowledgements

🗘 OSAKA UNIVE

OSAKA UNIVER

This work is supported by Grant-in-Aid for Scientific Research on Innovative Areas "Research on the Emergence of Hierarchical Structure of Matter by Bridging Particle, Nuclear and Astrophysics in Computational Science" (No.2004, 23105710).

Comarison with others

Physical point simulation by PACS-CS [2011]

The PACS-CS gauge configurations has one more set corresponding to $M_{\pi} \approx 156$ MeV. We tried to calculate the form factor on this set, and found that the pion two- and three-point correlators exhibit very large fluctuations, to the extent that taking a meaningful statistical average is difficult. This trend becomes more pronounced as the twist carried by quarks becomes larger. Since $LM_{\pi} \approx 2.3$ at this pion mass for L = 32, we suspect that this phenomenon is caused by a small size of the lattice relative to the pion mass, and consequent increase of large fluctuations.

Zero-mode subtracted correlators :

 $F_V(t,t',q^2) \equiv \frac{R_V(t,t';|\mathbf{p}_i|,|\mathbf{p}_f|,q^2)}{R_V^2(t,t';0,0,0)}$ may be helpful ?