格子量子色力学を用いた軽い原子核の計算 Calculation of small nuclei from lattice QCD

Takeshi Yamazaki

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Nagoya University

Y. Kuramashi and A. Ukawa for the PACS-CS Collaboration PRD84:054506(2011)

素核宇融合による計算基礎物理学の進展 - ミクロとマクロのかけ橋の構築 -@合歓の郷, Dec. 3-5

1. Introduction

Nuclei from first principle of strong interaction \rightarrow lattice QCD

Recent studies of lattice QCD for bound state of multi-baryon systems

1. Three- and four-nucleon systems '10 PACS-CS $N_f=0~m_{\pi}=0.8~{\rm GeV}$

2. H dibaryon in AA system (S=-2, I=0)
('88 Iwasaki et al.
$$N_f = 0 \ m_{\pi} > 0.7 \ \text{GeV}$$
)
'11 NPLQCD $N_f = 2 + 1 \ m_{\pi} = 0.39 \ \text{GeV}$
'11 HALQCD $N_f = 3 \ m_{\pi} = 0.67 - 1.02 \ \text{GeV}$
'11 Luo et al. $N_f = 0 \ m_{\pi} = 0.5 - 1.3 \ \text{GeV}$

Expoloratory study of three- and four-nucleon systems PACS-CS Collaboration, PRD81:111504(R)(2010)

1. Introduction

Nuclei from first principle of strong interaction \rightarrow lattice QCD

Recent studies of lattice QCD for bound state of multi-baryon systems

1. Three- and four-nucleon systems '10 PACS-CS $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$

2. H dibaryon in AA system (S=-2, I=0) ('88 Iwasaki et al. $N_f = 0 \ m_{\pi} > 0.7 \ \text{GeV}$) '11 NPLQCD $N_f = 2 + 1 \ m_{\pi} = 0.39 \ \text{GeV}$ '11 HALQCD $N_f = 3 \ m_{\pi} = 0.67 - 1.02 \ \text{GeV}$ '11 Luo et al. $N_f = 0 \ m_{\pi} = 0.5 - 1.3 \ \text{GeV}$

Bound state in simplest multi-nucleon system, NN system?

Scattering length a_0 in NN system from lattice QCD at \sim '09

 a_0 : Far from experiments due to $m_\pi \gtrsim 0.3~{\rm GeV}$

Deuteron: ${}^{3}S_{1}$ channel $\Delta E_{d} = 2.2$ MeV

Assumption: unbound due to $m_{\pi} \gtrsim 0.3 \text{ GeV}$

Aim of this work : check assumption with simpler method c.f. using nuclear force '09 HALQCD

Existence of bound state for a_0

System	w/ bound state	w/o bound state
Oth	bound state	scattering state
1st	scattering state	scattering state
<i>a</i> 0	< 0 from 1st	> 0 from 0th

Bound state exists $\rightarrow a_0$ never obtained from 0th state

by Lüscher's finite volume method
$$\Delta E_L = E_{NN}^0 - 2M = -\frac{4\pi a_0}{ML^3} + \cdots$$
 ('86, '91 Lüsher)

Need to check existence of bound state to calculate a_0

Two methods

- 1. Volume dependence of 0th state
- 2. Properties of 1st state energy

Outline

- 1. Introduction
- 2. Methods
 - 1. Identification of bound state
 - 2. Properties of 1st excited state
- 3. Simulation parameters
- 4. Results
 - 1. Single state analysis
 - 2. Two-state analysis
- 5. Summary and future work

2. Methods 1. Identification of bound state in finite volume

observe small $\Delta E_L = E - 2m < 0$ at one L is not enough

2. Methods 1. Identification of bound state in finite volume

observe small $\Delta E_L = E - 2m < 0$ at several L

- 2. Methods
- 2. Properties of 1st excited state in finite volume

'06 Sasaki & TY

1st excited state $\Delta E_L = E - 2m > 0$ at finite L

1st excited state \leftarrow diagonalization method '90 Lüscher & Wolff

3. Simulation parameters

- Quenched Iwasaki gauge action at $\beta = 2.416$ $a^{-1} = 1.54$ GeV with $r_0 = 0.49$ fm
 - a = 1.54 GeV with 70 = 0.4
- Tad-pole improved Wilson fermion action

 $m_{\pi} = 0.8 \text{ GeV}$ and $m_N = 1.62 \text{ GeV}$

reduce large statistical fluctuation

- 1. Finite volume dependepce of 0th state (Single state analysis)
- Three volumes: L = 3.1, 6.1, 12.3 fm
- Two smearing sources: for consistency check
- 2. Property of 1st excited state (Two-state analysis)
- Two volumes: L = 3.1, 6.1 fm
- Wavefunction smearing sink operators assumption: 0th energy = one of single state analysis

Simulations:

PACS-CS, T2K-Tsukuba at Univ. of Tsukuba, HA8000 at Univ. of Tokyo

4. Results

1. Single state analysis

Effective energy shift
$$\Delta E_L = E_{NN} - 2m_N$$
 at $L = 6.1$ fm
 $\Delta E_L = \log \left(\frac{R(t)}{R(t+1)} \right), \quad R(t) = \frac{C_{NN}(t)}{(C_N(t))^2}$

- $\Delta E_L < 0$ in $8 {\lesssim} t \leq 11$
- \bullet consistent plateaus in $8{\lesssim}t\leq11$

1. Single state analysis

• $\Delta E_L < 0$ in three volumes

$$\Delta E_L = -\frac{\gamma^2}{m_N} \left\{ 1 + \frac{C_{\gamma}}{\gamma L} \sum_{\vec{n}}' \frac{\exp(-\gamma L \sqrt{\vec{n}^2})}{\sqrt{\vec{n}^2}} \right\}, \ \Delta E_{\text{bind}} = \frac{\gamma^2}{m_N}$$

'04 Beane et al., '06 Sasaki & TY

• Bound state in both channels \leftarrow incosistent with experiment

$$\Delta E_{^{3}S_{1}} = 9.1(1.1)(0.5) \text{ MeV} \qquad \Delta E_{^{1}S_{1}} = 5.5(1.1)(1.0) \text{ MeV}$$
might be caused by heavy quark mass in calculation

2. Two-state analysis

Effective energy shift for ground and 1st excited states at L = 6.1 fm $\text{Diag}\left[G^{-1}(t_0)G(t)\right] = \lambda(t)$ with $G_{ij}(t) = \langle 0|O_i(t)O_j(0)|0\rangle$ $\Delta \overline{E}_{L,\alpha} = E_{\alpha} - 2m_N = \log\left(\frac{\overline{R}_{\alpha}(t)}{\overline{R}_{\alpha}(t+1)}\right), \quad \overline{R}_{\alpha}(t) = \frac{\lambda_{\alpha}(t)}{(C_N(t))^2}$

- $\Delta \overline{E}_{L,0} < 0$ and consistent with ΔE_L
- small, but $\Delta \overline{E}_{L,1} > 0$ as expected

- $\Delta \overline{E}_{L,1} > 0$ and $1/L^3$ tendency
- Scattering length a_0 fm

L[fm]	3.1	6.1
³ S ₁	$-1.5(0.2) \begin{pmatrix} +0.2\\ -1.4 \end{pmatrix}$	$-1.05(24) \begin{pmatrix} +0.05\\ -0.65 \end{pmatrix}$
$^{1}S_{0}$	$-1.8(0.3) \begin{pmatrix} +0.4 \\ -12.9 \end{pmatrix}$	$-1.62(24) \begin{pmatrix} +0.01 \\ -0.75 \end{pmatrix}$

Observe expected properties of 1st excited state

5. Summary and future work

Exploratory study of two-nucleon bound state in quenched lattice QCD

- Unphysically heavy quark mass
- Volume dependence of energy shift of ground state
- Properties of 1st excited state energy

1. $\Delta E \neq 0$ of 0th state in infinite volume limit

2. Expected properties of 1st excited state

 \rightarrow bound state in ${}^{3}S_{1}$ and ${}^{1}S_{0}$ at $m_{\pi} = 0.8$ GeV

Bound state in ${}^{1}S_{0}$: observed in $N_{f} = 2 + 1$ QCD at $m_{\pi} = 0.39$ GeV (NPLQCD Collaboration, arXiv:1109.2889[hep-lat]) Not observed in experiment

Future work

Bound state in ${}^{1}S_{0}$ vanishes as quark mass decreases?

- Quark mass dependence of ΔE and a_0
- Reduce systematic errors

Heavy quark mass

 $m_{\pi} = 0.8 \text{ GeV}$

Quenched effect

Lattice spacing dependence

Future work

Bound state in ${}^{1}S_{0}$ vanishes as quark mass decreases?

- Quark mass dependence of ΔE and a_0
- Reduce systematic errors

Heavy quark mass

 $m_{\pi} = 0.8 \text{ GeV} \rightarrow 0.7 \text{ and } 0.5 \text{ GeV}$

Quenched effect

 $N_f = 2 + 1 \text{ QCD}$

Lattice spacing dependence

Far future project

Calculation of NN, ³He, ⁴He channels

