Charm quark physics from lattice QCD

arXiv: 1104.4600, 1111.0142

Yusuke Namekawa(Univ. of Tsukuba) for the PACS-CS collaboration

S.Aoki, K-I.Ishikawa, N.Ishizuka, T.Izubuchi, K.Kanaya, Y.Kuramashi, Y.Namekawa, M.Okawa,

Y.Taniguchi, A.Ukawa, N.Ukita, T.Yamazaki, T.Yoshie

Contents

Simulation setup					
Re	<u>sults</u>				
3.1	Charmonium spectrum				
3.2	Charm-strange spectrum				
3.3	Charm quark mass				
3.4	Decay constants and CKM matrix elements				
3.5	Charmed baryon – Preliminary –				

4 Summary

 $\mathbf{16}$

1 Introduction

[Charm quark system] Charm quark system is charming for physicists.

- Charm quark mass and Cabibbo-Kobayashi-Maskawa(CKM) matrix elements are important for the standard model of elementary particles, because they are fundamental parameters which are difficult to be determined precisely due to m_{charm} ~ Λ_{QCD}. Lattice QCD is needed.
 ← In addition, m_{charm} and V_{CKM} are also needed as inputs not only for the standard model but also for a new theory beyond the standard model.
- Exotic hadrons such as $Z^+(4430)$, made of $udc\bar{c}$!?, have been observed.

Kobayashi and Maskawa got the Nobel prize in 2008.

[Model and lattice QCD]

So far, many model studies have been performed.

• Correctness of a model must be always checked, because the result is model-dependent.

 \leftarrow In addition to experiments, lattice QCD can judge a model.

- Since a lattice QCD simulation is expensive, a first trial must be performed by simple models. Then, we should improve models by experiments and lattice QCD.
 - \leftarrow Judgment on models by lattice QCD will be given later.

	Model	Lattice
Result	Model-dependent	Model-independent
Input	Many parameters	$lpha_{s}, m_{quark}$ (or hadron masses)
α_s, m_{quark}	Artificial	QCD running
Heavy quark	1/M expansion	Full order
Cost	Low	High

[Recent progress in lattice QCD] Simulations become realistic, thanks to the development of computers and algorithms.

- $N_f = 2 + 1$ full QCD simulation is performed, which includes dynamical effects of up-down and strange quarks.
- Dynamical up-down and strange quark masses can be set to their physical values by use of reweighting (i.e. m_π = 135 MeV).
 ← So far, up-down quark masses are higher than their physical value, because of the computational cost.

[Recent progress in lattice QCD(continued)] Light hadron spectrum has been reproduced within 5% accuracy.

 \rightarrow As a next step, we move on to the heavy quark system.

 $N_f = 2 + 1, a^{-1} = 2.2 \text{ GeV}$

PACS-CS,2010

2 Simulation setup

We perform a $N_f = 2 + 1$ full QCD simulation of the charm quark system on the physical point.

- Action : Iwasaki gauge + O(a) improved Wilson fermion for light sea quarks + relativistic heavy fermion for valence charm quark
- Lattice size : $32^3 \times 64 \ (L = 3 \text{ fm}, a^{-1} = 2.2 \text{ GeV} \ (\beta = 1.90))$
- Sea and valence quark masses : on the physical point (i.e. $m_{\pi} = 135 \text{ MeV}$)
- Inputs : m_{π}, m_K, m_{Ω} for $m_{ud}, m_s, a; m(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ for m_{charm}

$m_{ud}^{\overline{\mathrm{MS}}}(\mu = 2\mathrm{GeV})[\mathrm{MeV}]$	$m_s^{\overline{\mathrm{MS}}}(\mu = 2\mathrm{GeV})[\mathrm{MeV}]$	N_{conf} (MD time)
3	93	80 (2000)

[Operators]

• We employ the following two quark operators for mesons.

$$M_{\Gamma}^{fg}(x) = \bar{q}_{f}(x)\Gamma q_{g}(x),$$

$$\Gamma = I, \gamma_{5}, \gamma_{\mu}, i\gamma_{\mu}\gamma_{5}, i[\gamma_{\mu}, \gamma_{\nu}]/2,$$

$$f, g : \text{ labels for quark flavors.}$$

- Smearing function : $\Psi(r) = A \exp(-Br)$ at $r \neq 0, \Psi(0) = 1$.
 - $\diamond A = 1.2, B = 0.07$ for *ud* quark.
 - $\diamond A = 1.2, B = 0.18$ for strange quark.
 - $\diamond A = 1.2, B = 0.55$ for charm quark.

3 <u>Results</u>

3.1 Charmonium spectrum

- Since $m(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ is used as an input for m_{charm} , differences from m(1S) are predictions.
- Our results agree with experiments except for the hyperfine splitting.
- The hyperfine splitting is underestimated by 3σ from the experimental value of BES III(2011).
 → We have not evaluated the following systematic errors: scaling violations, dynamical charm quark effects, disconnected loop contributions.

3.2 Charm-strange spectrum

- Our calculation reproduces the charm-strange spectrum in 2σ level.
- Contaminations to $m_{D_{s0}^*}$, $m_{D_{s1}}$ from DK scattering states can be considerably large, which have not been included yet.
- $(D_{s0}^*, D_{s1} \text{ decays are prohibited in our } N_f = 2 + 1 \text{ lattice QCD.})$

[Judgment on models by lattice QCD]

- For D_{s0}^* , many models are not good. \leftarrow The standard potential model by Godfrey et al, 1983 fails to reproduce D_{s0}^* masses.
- A model by Matsuki et al, 1997;2006 is good.
- $(D_{s0}^*(2317))$ have been confirmed experimentally by BaBar, Belle, CLEO.)

3.3 Charm quark mass

- Charm quark mass is determined from the axial Ward-Takahashi identity.
- Our result is consistent with other lattice and continuum calculations.
- Our systematic error is still large. The main source of our error is the non-perturbative renormalization factors. (The renormalization factor is calculated non-perturbatively at the massless point. The mass dependent part is calculated perturbatively.)
- (Charm quark mass is renormalized at $\mu = 1/a$, and evolved to $\mu = m_{charm}^{\overline{\text{MS}}}$ using $N_f = 4$ four-loop beta function.)

 $-\ 12\ /\ 17\ -$

3.4 Decay constants and CKM matrix elements

- Our f_{D_s} agrees with the experimental value and other lattice QCD results.
- CKM matrix elements are extracted from our mass and pseudoscalar decay constant of charmed-strange meson combined with experimental values for the leptonic decay width of charmed-strange mesons.

$$\Gamma(D_s \to l\nu) = \frac{G_F^2}{8\pi} m_l^2 m_{D_s} f_{D_s}^2 \left(1 - \frac{m_l^2}{m_{D_s}^2}\right)^2 |V_{cs}|^2$$

3.5 Charmed baryon – Preliminary –

• Our results agree with experiments in 2σ level, except for Ξ_{cc} .

 \diamond Only SELEX(2002,2005) found $\Xi_{cc} = 3519$ [MeV].

- ♦ BABAR, BELLE and FOCUS found no evidence for Ξ_{cc} . → Ξ_{cc} has been omitted from PDG 2011.
- $(\Sigma_c \text{ decay is prohibited on our lattice.})$

[Judgment on models by lattice QCD] - Preliminary -

- For Ξ_{cc} , many models are not bad. \leftarrow A model by Martynenko, 2008 seems to be wrong.
- SELEX experiment seems to be wrong.

4 Summary

We performed a $N_f = 2 + 1$ full QCD simulation of the charm quark system on the physical point at $a^{-1} = 2.2$ GeV.

- Our calculation reproduces meson mass spectrums of the ground states except for hyperfine splittings.
 - \diamond Our data of the charmonium hyperfine splitting is 3σ smaller than experiments. \leftarrow Possible origins of the discrepancy are O(a) effects in our relativistic heavy quark action, dynamical charm quark effects, and disconnected loop contributions.
- Our results for charm quark mass and CKM matrix elements are presented.
- Our calculation reproduces baryon mass spectrums of the ground states except for Ξ_{cc} .
 - \diamond Our preliminary data of Ξ_{cc} shows a significant deviation from the experimental value of SELEX group.
 - \leftarrow SELEX value seems to be wrong.

[Future work]

- We are going to a finer lattice $(a^{-1} = 3 \text{ GeV})$ to take a continuum limit.
- Excited states of charmonium separating $D\overline{D}$ contamination (calculations for X, Y, Z are hard, in practice).

[New computer]

- K-computer will be used for lattice QCD, which is the fastest computer in the world at present(Nov. 2011).
- Many lattice QCD theorists in Japan(including me) are working for this K-computer project.

 $- \ 17 \ / \ 17 \ -$

