
高温高密度での格子ＱＣＤシミュレーション
Lattice QCD Simulations at High Temperature and Density

公募研究公募研究
「状態密度法による有限密度ＱＣＤの計算方法の開発」

Shinji Ejiri
Niigata University

WHOT-QCD collaboration 
S. Ejiri1, S. Aoki2, T. Hatsuda3,4, K. Kanaya2, Y. Maezawa5, 

Y Nakagawa1 H Ohno2 6 H Saito2 and T Umeda7Y. Nakagawa1,  H. Ohno2,6, H. Saito2, and T. Umeda7

1Niigata Univ., 2Univ. of Tsukuba, 3Univ. of Tokyo, 4RIKEN, 
5BNL, 6Bielefeld Univ., 7Hiroshima Univ.

素核融合による計算基礎物理学の進展、志摩市、合歓の郷、2011年12月3-5日



Phase structure of QCD at high temperature and density 

Lattice QCD Simulations quark-gluon plasma phase

• Phase transition lines
• Equation of state
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Problems in simulations at 0
 Problem of Complex Determinant at 0

 Boltzmann weight: complex at 0
 Configurations cannot be generated.
 Monte-Carlo method is not applicable.

i f h d ( i h d) Density of state method (Histogram method)
X: order parameters, total quark number, average plaquette etc.
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Equation of State
• Integral method

– Interaction measure ln  13 Zp 


e ac o easu e

computed by plaquette (1x1 Wilson loop) and the derivative of detM.
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• Pressure at 0
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• Calculation of           and : required.P )0(det)(det MM 



Distribution function for Equation of state
         gSN emMFFPPDUmTFPW    ,det'' ,,,',' f
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• We propose a method for the calculation of this W.

,)0(det)(detlnf MMNF 

– Overlap problem
– Sign problem

O h l l• Once we get the pressure, we can calculate
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-dependence of the effective potential
    )(ln)(eff XWXV    ,,,,   TXWdXTZ

X: order parameters, total quark number, average plaquette, quark determinant etc. 

 
Crossover

Critical point ,,eff TXV Correlation length: short 
V(X): Quadratic function

Correlation length: long

T

Correlation length: long
Curvature: Zero

T
QGP

1st order phase transition

hadron CSC?

1 order phase transition

Two phases coexist
D bl ll i l


Double well potential



Distribution function and Effective potential at 0 
(S.E., Phys.Rev.D77, 014508(2008))

• Distributions of plaquette  P (1x1 Wilson loop for the standard action)
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Effective potential:

R(P,): independent of ,    R(P,) can be measured at any . 

1st order phase transition?=0 crossoverEffective potential:

     0ln)( PWPRPV

1 order phase transition?

+ = ??

=0 crossover
non-singular
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Effective potential at 
(S E Phys Rev D77 014508(2008))

      ,ln,ln,,eff PRPWPV
(S.E., Phys.Rev.D77, 014508(2008))

Results of Nf=2 p4-staggared, 
m/m0.7 Wln

[data in PRD71,054508(2005)]

Rl

at =0

• detM: Taylor expansion up 
to O(6)

Rln

• The peak position of W(P) 
moves left as  increases at 

0=0.

Solid lines: reweighting factor at 
finite /T,  R(P,)

Dashed lines: reweighting factor 
without complex phase factor.



Curvature of the effective potential 
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Nf=2 p4-staggared, m/m0.7

at q=0 
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• First order transition for q/T  2.5
• Existence of the critical point: suggested

222 dPdPdPp

Existence of the critical point: suggested
– although the quark mass is large.



Probability distribution function by 
h h d i l tiphase quenched simulations

WHOT-QCD Collaboration, in preparation, (arXiv:1111.2116)

• We perform phase quenched simulations
• The effect of the complex phase is added by the• The effect of the complex phase is added by the 

reweighting.
• We calculate the probability distribution function.

G l• Goal
– The critical point
– The equation of state

Pressure, Energy density, Quark number density, Quark number 
susceptibility, Speed of sound, etc.



Probability distribution function 
by phase quenched simulationby phase quenched simulation

• We perform phase quenched simulations with the weight:We perform phase quenched simulations with the weight:
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of the phase quenched. 



Phase quenched simulation
     ,,,',',,,',' 0','
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• When  = d pion condensation occurs

      ,det,det,det 2 KMKMKM     ,,det,det * KMKM

• When u=d, pion condensation occurs.
• is suggested in the pion 

d d h b h l i l 

Phase structure of 
the phase quenched 

2-flavor QCD
0ie

condensed phase by phenomenological 
studies. [Han-Stephanov ’08, Sakai et al. ‘10]

N l b t W( ) d W ( )

 2 flavor QCD

No overlap between W() and W0().
• Where is the source of the large negative 

i V ?
0ie

curvature in Veff ?
– Phase boundary of the pion condensed phase.

P d i i l li b H d d QGP

pion condensed 
phase 

/2– Pseudo critical line between Hadron and QGP 
phases.          large fluctuations in : expected 

m/2 



Avoiding the sign problem
(SE, Phys.Rev.D77,014508(2008), WHOT-QCD, Phys.Rev.D82, 014508(2010))

: complex phase MdetlnIm

• Sign problem: If        changes its sign,
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• Cumulant expansion
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– Odd terms vanish from a symmetry under    


CFPFPFPFPCFPFPCFPC

43

,,,

2

,

332

,,

22
,

  ,23  ,  ,

y y    
Source of the complex phase

If the cumulant expansion converges,   No sign problem.



Distribution of the complex phase

• We should not define the complex phase in the range from  to 
• When the distribution of  is perfectly Gaussian, the average of the 

complex phase is give by the second order (variance),
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Complex phase 
• Gaussian distribution   The cumulant expansion is good.
• We define the phase
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– The range of  is from - to .
A h i l l F f i f

     


• At the same time, we calculate F as a function of ,
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• The reweighting factor is also computed
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The reweighting factor is also computed,
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Distribution of the complex phase
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• Well approximated by a Gaussian function.Well approximated by a Gaussian function.
• Convergence of the cumulant expansion: good.



Overlap problem
             lnexp1    1
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• W is computed from the histogram.
• Distribution function around X where                         XOXV ln)(eff 

is minimized: important.
• Veff must be computed in a wide range.
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reliable range
If X-dependence is large. reliable range



Overlap problem

• Perform phase quenched     fdet
N

MFPW 

Reweighting method     W0: distribution function in phase quenched simulations.

p q
simulations at several points.
– Range of  F is different.

Ch b i h i
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• Change  by reweighting 
method.

• Combine the data• Combine the data.

Distribution in a wide range:Distribution in a wide range:
obtained. 

• The error of R is small 
because F is fixed.  
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Effective potential at finite 
• Combine V0 and the phase factor.        Preliminary
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Reweighting in phase quenched simulations
very preliminary

     000eff ,,ln,,ln,,  PRPWPV

very preliminary
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• Solid lines
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Canonical approach
• Canonical partition function (Laplace transformation )

        NWTNNTZTZ

• Effective potential as a function of the quark density =N/V

        
NN

CGC NWTNNTZTZ exp,,

• Effective potential as a function of the quark density =N/V
TVVTZWV C  ),(ln)(ln)(eff

• The first derivative
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• First order phase transition: Two phases coexist.
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Inverse Laplace transformation with 
a saddle point approximation (S.E., arXiv:0804.3227)p pp ( , )

• Approximations: 
– Taylor expansion: 

Nf=2 p4-staggered, m/m0.7,   lattice4163
y p

ln det M  up to O(6)
– Gaussian distribution: 

Saddle point approximation– Saddle point approximation
Much easier calculations

• First order transition at 
T/Tc < 0.83

• Study near the physical point
importantp

Solid line: multi- reweighting
Dashed line: spline interpolation Number densityDashed line: spline interpolation
Dot-dashed line: the free gas limit 

Number density



Summary

• The histogram method is useful for the investigation of the 
nature of the phase transitionnature of the phase transition.

• To avoid the sign problem the method based on the cumulant• To avoid the sign problem, the method based on the cumulant 
expansion of is useful. 

• Further studies are important applying this method.


