Tensor network methods 1n

condensed matter physics
[SSP, University of Tokyo, Tsuyoshi Okubo



Contents

Possible target of tensor network methods
Tensor network methods

* Tensor network states as ground state ansatz
* Partition function and Renormalization

Summary



Targets of tensor network methods

e [.attice models

{ Localized spin system:

S; : Spin operator, typically S=1/2  §
H = Z Jij Si Sj *Spins located on a lattice: ‘
L] square, triangular, cubic, ... !

[ We want to find novel states of the matter

(L. Balents, Nature (2010) & D)
Spin liquid (RVE)

* Quantum spin hiquids
* Topological phases
* Valence Bond Solids

[ We want to investigate phase transition

e (Quantum) critical phenomena
e Topological phase transition

O :siwg Let



Targets of tensor network methods

e [.attice models

[tinerant electron systems: (Hubbard model)
H = Z ti,j(cj,acj,a + H.c.) + UZ N AN,
(i,9),0 i

Cio :creation operator of an electron.

fZWe are interested 1n

* Super conductivity
* Non-equilibrium phenomena

A lot of interesting things occur

in the Avogadro scale ~ 10
» We need large scale calculations.



Numerical methods

[A Numerical diagonalization

Exact and applicable for any systems, but
S=1/2 spin models ~ 40 sites

Hubbard model ~ 20 sites
[ Quantum Monte Carlo (QMC)

Within statistical error, solving problem “exactly”!

We need caretul extrapolation.

(It 1s often very difficult.)

FEasy calculation for

Interesting problems are usually
But,

suffter from the

[ Dynamical Mean Field Theory (DMFT)
Kind of mean-held

Success 1n description of
metal - insulator

Temporal quantum fluctuations are treated '

: hase transition
accurately through a few sites P



Numerical methods
[A Variational method

Assuming a wave-function ansatz with several parameters.

Determining parameters so as to minimize the energy.

e Variational Monte Carlo

Calculate energy using Monte Carlo sampling

' No sign problems.

Larger system size than the diagonalization.

* Tensor network methods (including DMRG)

Wave-function is represented by

No sign problems.
Very large system size (or infinite)



Tensor network method

G.S. wave function: ) = E : Ty ma, o ymy I, M2, - my)
{mz—Ti}
T : N-I’al’lk tenSOI’ Tm17m27... ’mN — m # Of ElementsZQN
“Tensor network” M1 M2 M3 M4 ms
decomposition
*  Matrix Product State b '
MPS Aylmy]Aaima] - Anymy] = ? ? ? ? ? 1# = A; ;|m]
(MPS) Te
A [m] : Matrix for state m )
* General network ‘ﬁ = Xi,jk[m]
TI'X1 [ml]Xg[mg]X3[m3]X4[m4]X5[m5]Y m
X,Y : Tensors m; - : i‘ J =Y ik
Tr : Tensor network contraction : 2 k
-'\‘

By choosing a ““good” network, we can express G.S. wave function efficiently.

MPS: # of elements —2ND?

ex. D: dimension of the matrix A

EXponential% ILinear *If D does not depend on N...




Family of tensor network states

Work well in one-dimensional systems

DMRG, TEBD, ...

' PEPS,TPS: two or higher dimensional systems
generalization of MPS

Suitable for a
scale invariant states

MPS: 99999

BN CEE
' Renormalization ] 1§



Quantum Entanglement

Reduced density matrix of the subsystem.

g ~
i 4

4 «— . sub = 1S env U (W
QQ:. Psub Tenv|¥) (¥

Entanglement entro
g | 9%

Ssub = _Tr(psub lOg psub)

i { general states: Ssyp ~ L¢ :Volume low '

' L: boundary length

A lot of ground state

S.p ~ L2 :Area low

ﬁ'

1-dimensional gapless system: Ssub ~ log L

Metallic system : Saub ~ L1 log L



Entanglement entropy of MPS and PEPS

* Entanglement entropy of MPS

Sub- -system connected to the environment
through only two bonds.

For matrix dimension D:

Ssub = 2 log D

In order to represent the entanglement entropy,
we need exponentially large matrix dimension
for two and higher dimensions.

* Entanglement entropy of PEPS

For tensor dimension D:
e log D

For suthciently large, but finite, D,
a lot of ground states of very large
(infinite) system can be represented

by PEPS!

MPS
sub

TarY

MPS for 2D

ub

" PEPS on square lattice h




Advantage of tensor network method

[ Efficient representation of the ground state
MPS (for d=1) and PEPS (for 2 > d) can represent

the ground state wave-function for very large system ethiciently.

Finite tensor-dimension

[ Applicable to any system

No sign problems!

[ Small bias

* Assumed wave-function contains large # of elements.

e The shapes of MPS and PEPS reflect only underlying lattice geometry.



Ditficulties

1. High computational costs for contraction of the network

For PEPS: = =
S e = = PEPS on square lattice
exponentially large costs —‘\ ‘\ ‘\ ‘\ ‘\ ‘\_
RN
* KRR R&K
e aas
We use WA WA WA
KERKRKX

o

But, still very high cost.

9D- PEPS: O(D

L
0 MPS: O(D

For two or higher dimensions, tensor dimensions are limited:

D~10




Ditficulties

2. Fermionic system with fermi surface (metal, semi-metal)

Entanglement entropy has a

S Fe—l log L

¥

* Another tensor network states: branching MERA?
e Combination with variational Monte Carlo ?

PEPS need

Challenging problem!



Partition function representation

Partition function: 7 = Trexp(—B8H)

Z can be represented by

Example: classical Ising model on the

Az’,j,k,l = 6(0i0j+0j0k‘|‘0k0l+0'l0'i)/T

Ti—= ot _Ta\lf

from G. Evenbly and G. Vidal, arXiv:1412.0732
*For quantum system:

Path integral representation » 1 +d dimensional tensor network



Contraction and renormalization

Z = Trexp(—5H)

Contraction: exponentially large cost

* Approximation: Using real space renormalization

Tensor Renormalization Groupe (TRG)
M. Levin and C. P. Nave PRL (2007)

l == x
Decomp081t10n

Renormalization



Improved renormalization method
Problems in TRG: TRG does not represent

¥

New renormalization methods: Tensor Network Renormalization (TINR)

G. Evenbly and G. Vidal, arXiv:1412.0732.
arXiv:1502.05385.

Especially,

A
/

J

Insertion of disentangler
()
o.e efficient renormalization of
/ short range correlation

TNR can produce renormalization flow to the physical fixed point!




Summary

e Tensor network methods are ethicient tools to
investigate condensed matter physics

e As the ansatz of variational wave-functions

* As a tool for ethcient Real space renormalization



