Numerical study on quantum entanglement entropy in 4d SU(3) gauge theories

Etsuko Itou (KEK)

collaboration with K. Nagata (KEK), Y.Nakagawa, A. Nakamura (Hiroshima U., RCNP) and V.I.Zakharov (Max Planck Inst.)

cf. arXiv:0911.2596 and 1104.1011: Y.Nakagawa, A.Nakamura, S.Motoki and V.I.Zakharov

"10sor network workshop" --- Field 2 x 5 joint workshop on new algorithms for quantum manybody problems — @ Tokyo University, Future Center 2015/5/14

entanglement entropy =? a novel approach to understand the confinement

Don't think....feel....

Outline

- Introduction (QCD in 4d)
- Definition of entanglement entropy
- Replica method
- Results for the quenched QCD

QCD

dynamics of gluons and quarks

 $\mathcal{L} = \frac{1}{\Lambda} (F^a_{\mu\nu})^2 + \bar{\psi} (iD_\mu\gamma^\mu - m)\psi$ Yang-Mills theory ۲ (SU(3)gauge theory) $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + igf^{abc}A^b_\mu A^c_\nu \qquad D_\mu = \partial_\mu - igA^a_\mu t^a$ local symmetry parameter: gauge coupling, fermion mass ۲ adjoint reps. of SU(3) $A^{a}_{\mu}(x) \quad \{ {a = 1, \cdots, 8 \atop \mu = 1, \cdots, 4} \}$ (gluon: messenger of the force) $\psi^i_{\alpha}(x), \overline{\psi}^{\overline{i}}_{\alpha}$ or q, \overline{q} {i=1,2,3 $\alpha=1,\cdots,4$ • fundamental reps. of SU(3) (quark: fundamental element of matter) remarks: pure YM or quenched QCD => only first term full QCD => whole lagrangian meson baryon ex)pion ex)proton

confinement

A nonperturbative property of QCD

Hadron

Basic properties of E.E.

entanglement entropy for quantum system

- how much a quantum state is entangled quantum mechanically
- d.o.f of the system
- quantum properties of the ground state for the system
- in finite T system, it gives a thermal entropy

QCD theory (T=0)

A color confinement changes the d.o.f of the system

Definition of the entanglement entropy

Entanglement entropy (E.E.)

von Neumann entropy
$$S_{tot} = -\text{Tr}\rho_{tot}\log\rho_{tot}$$

density matrix $ho_{tot} = |\Psi
angle \langle \Psi|$ $|\Psi
angle$:pure ground state

decompose total Hilbert space into two subsystems

$$\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_B$$

reduced density matrix

$$\rho_A = -\mathrm{Tr}_{\mathcal{H}_B}\rho_{tot}$$

entanglement entropy

$$S_A = -\mathrm{Tr}_A \rho_A \log \rho_A$$

At finite T, it is equivalent to the thermal entropy.

Holzhey,Larsen and Wilczek: NPB424 (1994) 443 Calabrese and Cardy: J.S.M.0406(2004)P06002 Calabrese and Cardy, arXiv:0905.4013

(1+1)-dim. model

At the critical point,

$$S_A(l) = \frac{c}{3}\log\frac{l}{a} + c_1$$

c is the central charge in 2d CFT.

 ξ : correlation length of the system

In the non critical system,

 $l \ll \xi$ $S_A(l) \sim \frac{c}{3} \log \frac{l}{a}$

 ξ : correlation length of the system

In the non critical case,

 ξ : correlation length of the system

At the critical point or $\ l\ll\xi$ in the noncritical system

$$S_A(l) = \frac{c}{3}\log\frac{l}{a} + c_1$$

In the non-critical system,

$$S_A(l) \xrightarrow[l \gg \xi]{} \frac{c}{3} \log \frac{\xi}{a}$$

Difficulties to obtain E.E. in 4d gauge theory

• UV cutoff dependence of 4d E.E.

(local) gauge invariance

E.E. for gauge theory

• P.V.Buividovich and M.I.Polikarpov PLB670(2008)141

extended Hilbert space

• H.Casini, M.Muerta and J.A.Rosabal arXiv:1312.1183

electric b.c.(electric center), magnetic center, trivial center

• D.Radicevic arXiv:1404.1391

magnetic center

• W.Donnelly PRD85 (2012) 085004

extended lattice construction

- S.Ghosh, R.M.Soni,S.P.Trivedi arXiv:1501.02593
- S.Aoki, T.Iritani, M.Nozaki et.al. arXiv:1502.04267

maximally gauge invariant reduced density matrix

E.E. for gauge theory

• P.V.Buividovich and M.I.Polikarpov PLB670(2008)141

extended Hilbert space

• H.Casini, M.Muerta and J.A.Rosabal arXiv:1312.1183

electric b.c.(electric center), magnetic center, trivial center

D.Radicevic arXiv:1404.1391

magnetic center

• W.Donnelly PRD85 (2012) 085004

extended lattice construction

- S.Ghosh, R.M.Soni,S.P.Trivedi arXiv:1501.02593
- S.Aoki, T.Iritani, M.Nozaki et.al. arXiv:1502.04267

maximally gauge invariant reduced density matrix

red definitions are inadequate for E.E. or rhoA

E.E. for gauge theory

• P.V.Buividovich and M.I.Polikarpov PLB670(2008)141

extended Hilbert space

H.Casini, M.Muerta and J.A.Rosabal arXiv:1312.1183

electric b.c.(electric center), magnetic center, trivial center

- D.Radicevic arXiv:1404.1391
 - magnetic center
- W.Donnelly PRD85 (2012) 085004

extended lattice construction

- S.Ghosh, R.M.Soni,S.P.Trivedi arXiv:1501.02593
- S.Aoki, T.Iritani, M.Nozaki et.al. arXiv:1502.04267

maximally gauge invariant reduced density matrix

Our work

Calabrese and Cardy: J.S.M.0406(2004)P06002

Simulation results

Lattice results for quenched SU(2)

Entropic C-function

should be constant in short I region

Our result

Simulation setup

- Wilson plaquette gauge action
- Ns=Nt=16, 32
- I/a=2,3,4,5,(6)
- beta=5.70 5.87

- # of configuration 12,000~84,000
- scale setting $r_0 = 0.5$ fm and ALPHA coll.

Lattice results for quenched SU(3)

T=0, quenched QCD

Entropic C-function

independent of UV cutoff

$$C(l) = l^3 \frac{1}{|\partial A|} \frac{dS}{dl}$$

Comparison with Ryu-Takayanagi results

Ryu and Takayanagi:PRL96(2006)181602 JHEP 0608(2006)045

Holographic (or field theoretical) approach

(3+1)-dim. CFT
$$\frac{1}{|\partial A|}S_A(l) = c\frac{N_c^2}{a^2} - c'\frac{N_c^2}{l^2}$$

c' is obtained by AdS and QFT

 $c' \sim 0.0049$ for free real scalar theory

Estimation for non-abelian gauge theory A^a_μ { $a=1,\cdots,8$ $\mu=1,\cdots,4$ $C_{gauge} \sim 2c' \cdot 2 \cdot 8 \sim 0.1568$

Our numerical result

 $C_{\rm gauge} \sim 0.2064$

Detail analyses

finite vol. effect

UV cutoff dependence

algorithm dependence of the numerical integration

replica number dependence

Summary

- This is the first precise determination of E.E. for quenched QCD
- Nc dependence in the short I region is Nc² as expected by AdS/CFT and field theoretical insights
- No discontinuity exists as contrast with SU(2) results
- Entropic C-function shows UV cutoff independence
- Value of C-function agrees with Ryu-Takayanagi work
- replica number (n ->1) dependence

Future directions for E.E. using the lattice

QCD at zero T

- give a novel observation for confinement
- even in full QCD case
- QCD at finite T
- gives the thermal entropy and the correlation length in QGP phase
- conformal window in 4dim Nf flavor QCD
- would give the a-function and central charge

nontrivial IR fixed point is found by lattice simulation cf) E.I. PTEP(2013)083B01