「J-PARCで展開される将来の物理」研究会, 2011年6月10-11日,高エネルギー加速器研究機構, つくば市

ストレンジネスを持つ原子核

Osaka Electro-Communication University, Neyagawa 572-8530, Japan harada@isc.osakac.ac.jp

はじめに 1 2. S = -1の原子核 • ハイペロン-核子間相互作用 ∑ハイパー核 3. 中性子星と高密度バリオン物質 4. S = -2の原子核 三 ハイパー核 5. K^{bar}中間子原子核

J-PARC (Japan Proton Accelerator Research Complex)

K1.8ビームライン 2009/5/12現在

Proposed experiments for SNP @J-PARC

- E03: Measurement of X rays from Ξ^- atom /K. Tanida (Kyoto)
- E05: Spectroscopic study of Ξ-hypernucleus, ¹²_ΞBe, via the ¹²C(K⁻,K⁺) reaction /T. Nagae (Kyoto) [Day 1]
- E07: Systematic study of double strangeness system with an emulsion-counter hybrid method/K. Imai (Kyoto), K. Nakazawa (Gifu), H. Tamura (Tohoku)

S = -1

S = -2

- E10: Production of neutron-rich Lambda-hypernuclei with the double charge exchange reaction /A. Sakaguchi (Osaka), T. Fukuda (Osaka E. -C.)
- E13: Gamma-ray spectroscopy of light hypernuclei/H. Tamura (Tohoku) [Day 1]
- E15: A search for deeply-bound kaonic nuclear states by in-flight ³He(K⁻,n) reaction/M. Iwasaki (RIKEN), T. Nagae (Kyoto) [Day 1]
- E17: Precision spectroscopy of kaonic ³He 3d→2p X-rays /R. S. Hayano (Tokyo), H. Outa (RIKEN) [Day 1]
- E18: Coincidence measurement of the weak decay of ¹²_AC and the three-body weak interaction process/H. C. Bhang (Seoul), H. Outa (RIKEN), H. Park (KRISS)
- E22: Exclusive study on the ΛN weak interaction in A=4 Λ-Hypernuclei/S. Ajimura (Osaka), A. Sakaguchi (Osaka)
- E23: Search for a nuclear Kbar bound state K⁻pp in the d(π^+ ,K⁺) reaction/T. Nagae (Kyoto)

<u>ハドロン物質の相図</u>

Neutron star core

"An interesting neutron-rich hypernuclear system"

ストレンジネス核物理

- ストレンジネスは原子核深部を探るプローブ
 –ハイペロンはパウリ排他律を受けない
- Impurity Physics
 - "糊"としての役割
 - 原子核構造の変化

- 媒質中のハドロンの性質
- Baryon-Baryon Interaction
 - YN, YY Interaction based on SU_f (3)
 - 核力の統一的理解・斥力芯の起源
- Neutron Starの構造と進化
 高密度核物質の解明, EOS,

<u>ストレンジネス核物理の展開</u>

by E.Hiyama

"QCD,核力から核構造へ"と"核構造からQCD,核力へ"

<u>2. S = -1 の原子核</u>

∧ハイパー核

■(π⁺,K⁺)反応によるハイパー核の生成 芯核の励起状態,ハイパー核らしい状態, etc.

■核内Λ粒子の働き

Gamma-ray spectroscopy of light hypernuclei

▲Λ粒子の1粒子ポテンシャルとスピン軌道力

Overbinding Problem on s-Shell Hypernuclei

■中性子過剰ハイパー核

■∧ハイパー核の弱崩壊

 $\frac{12}{C(\pi^+, K^+)}$ 反応実験 KEK-E369

11

<u>ハイパー核らしい状態の生成</u>

 9 Be(π^{+}, K^{+}) $^{9}_{\Lambda}$ Be

High-resolution, high-statistics

Role of the Λ-hyperon in nuclei

·線分光実験 KEK-E419

Ge detector resolution \sim a few keV

Gamma-ray spectroscopy of light hypernuclei

> Magnetic moments μ_{Λ} in a nucleus from B(M1)

<u>A s.p. structure and A spin-orbit splitting in ${}^{89}_{\Lambda}Y$ </u>

<u>A single-particle energies in symmetric nuclear matter</u>

OBEP: Nijmegen YN potential Models

```
U_{\Lambda}(k_F, \mathcal{E}_{\Lambda}) k_F = 1.35 \text{fm}^{-1}
```

G-matrix calc. QTQ

Scattering length -2.70fm -1.90fm -2.29fm -2.78fm -2.51fm as -2.10fm -1.65fm $\mathbf{a}_{\mathbf{f}}$ -1.75fm -1.96fm -1.88fm -1.41fm -1.86fm 次 쌽 11 +4.5 +6.9 **₩**+**0.9 ⋈** +0.4 0 (unit in MeV) -0.9 -0.2 -3.2 -14.4 J. -12.8 odd ¦ -8.0 -9.2 -12.7 -12.3 -13.7 -10.0 -10 ${}^{1}S_{0}$ -7.4 -14.6 -22.9 -20.7 -26.0 ${}^{3}S_{1} - {}^{3}D_{1}$ -20 -23.8 -21.4 -23.3 -21.5 **-**31.6 -25.1 NSC89 -28 -31.1 -30 NHC-F -30.8 -34.3 -34.0 Exp. NSC97f -35.6 -38.5 NSC97e NSC08b -40.5 NSC08a -40 NSC04a NHC-D Rijken-Yamamoto et al. Rijken-Yamamoto Bando-Yamamoto 1999 Yamamoto 2009 1985 2006

Y. Yamamoto, H. Bando, PTP.Suppl.81(1985)9; Y. Yamamoto, et al., PTP.Suppl.117(1994)361; Th.A.Rijken, V.G.J.Stoks, Y.Yamamoto, PRC59(1999)21; Th.A.Rijken, Y.Yamamoto, PRC73(2006) 044008; Y.Yamamoto, T.Motoba, T.A.Rijken, PTP.Suppl.185(2010)72.

Overbinding Problem on s-Shell Hypernuclei

 ΛN single-channel calc.

Dalitz et al., NP B47 (1972) 109.

g-matrix calc. with $\Lambda N-\Sigma N(D2)$

Akaishi et al., PRL 84 (2000) 3539.

"The 0⁺-1⁺ difference is not a measure of AN spin-spin interaction."

中性子過剰
ハイパー核

E10@J-PARC

Production of neutron-rich Lambda-hypernuclei with the double charge exchange reaction

First production of neutron-rich Λ hypernuclei

 $^{10}B(\pi^-, K^+)^{10}_{\Lambda}Li$ A spectrum by DCX (π^-, K^+) reaction at 1.2GeV/c

(π^{-}, K^{+}) – Double Charge Exchange (DCX) Reaction

<u>A spectrum by DCX (π^-, K^+) reactions at 1.2GeV/c</u>

<u>A spectrum by DCX (stopped K⁻, π ⁺) reactions</u>

If the Σ^- admixture probability of ~0.6 % is <u>assumed</u> in {}^{12}_{\Lambda}Be, Early we demonstrate the (stopped K⁻, π^+) spectrum on a ¹²C target. **KEK** data 12**C** $^{12}\mathrm{C}(\mathrm{K}^{-},\pi^{+})$ Fitting to the QF spectrum from KEK 1000 3D orbits $\Sigma^- QF$ COUNTS [EXP.] ′×10^{−2} 500 $^{12}_{\Lambda}\text{Be}$ $\frac{12}{\Sigma}$ Be Integrated p_{Λ} production rate s_{Λ} $\sim 4 \times 10^{-6} / K^{-1}$ 0 -20 20 80 0 40 60 100 E_{Λ} (MeV)

DAPANE data: U.L. ~ $(2.0 \pm 0.4) \times 10^{-5} / K^{-1}$

M.Agnello, et al., PLB640(2006)145.

<u>Ab initio calculation of Λ^{5} He with full realistic interactions</u>

H.Nemura et al., PRL89(2002)142504

Production of neutron-rich Λ-hypernuclei with the DCX reaction

Coherent Λ - Σ coupling in neutron-excess environment

Extremely enhanced

<u> ハイペロン-核子間相互作用</u>

One-Boson-Exchange model

➢Nijmegen potential

NHC-D/F→NSC89→NSC97e,f→ESC04a-d→ ESC06→ESC08a-c

[Th.A. Rijken, M. M. Nagels, Y. Yamamoto, PTPS185(2010)14

Funabashi-Gifu potential

[I. Arisaka et al., PTP104(2000)995; FBS.Suppl.12(2000)395]

Quark Cluster model

➢Kyoto-Niigata potential

RGM-F \rightarrow FSS \rightarrow fss2

[Y. Fujiwara et al, PRC54(1996) 2180; PPNP58 (2007)439]

Chiral LO Effective Field Theory

➢ Julich potential

[H.Polinder, et al., NPA779 (2006) 244;PLB653 (2007) 29]

NN, YN, YY interactions

Total cross section for baryon-baryon scattering

C.B. Dover and H. Feshbach, Ann. Phys. 198(1990)321

バリオン-バリオン間相互作用の短距離斥力

≻SU(6)sp symm. → Strongly spin-isospin dependence, $V_{ALS}(\Lambda N) \sim V_{LS}(\Lambda N)$

<u>K⁻d $\rightarrow \pi^-\Lambda p$ spectrum in ²H(K⁻, π^-) Reactions</u>

ΣN ³S₁ [10*]: "Strangeness partner of deuteron"

Baryon-Baryon force from lattice QCD

[NN] N. Ishii, S. Aoki, T. Hatsuda, PRL99(2007)022001

[**AN,EN**] H. Nemura et al., PLB673(2009)136; HAL QCD Collaborations, NPA835(2010)176

 $V_{\Lambda N} = V_0(r) + V_{\sigma}(r)(\vec{\sigma}_{\Lambda} \cdot \vec{\sigma}_N) + V_T(r)S_{12} + V_{LS}(r)(\vec{L} \cdot \vec{S}_+) + V_{ALS}(r)(\vec{L} \cdot \vec{S}_-) + O(\nabla^2)$

 Σ single-particle potentialの性質 (π-,K⁺)反応スペクトルの解析
 Σ-原子のX線データの解析

・強いアイソスピン依存性 (K-,π⁺)反応スペクトルの解析

■ Σ ハイパー核の束縛状態, ${}^{4}_{\Sigma}$ He

Coherent Lane-term / Coherent Λ - Σ coupling term α 粒子のstrangeness partner

<u> Σ^- spectrum by (π^-, K^+) reaction at 1.2GeV/c</u>

These Σ -nucleus potentials have a repulsion with a sizable imaginary potential.

<u> Σ^{-} -nucleus potentials fitted to the Σ^{-} atomic data</u>

Not so sensitive to the radial behavior of the potential inside the nucleus !!

(K⁻,π[±]) Experiments at BNL-AGS in 1990-2000

"The Σ narrow width puzzle was disappeared."

by S.Bart et al., PRL83(1999)5239.

600MeV/c (4deg.)

- There is no Σ bound state on both ⁶Li and ⁹Be.

– The π^- and π^+ spectra are very different each other.

Strong isospin dependence of the Σ -nucleus potentials

Remarks

Properties of the Σ -nucleus potentials by comparing theoretical calculations with the available data:

$$U_{\Sigma}(\boldsymbol{r}) = U_{\Sigma}^{0}(\boldsymbol{r}) + \frac{1}{A_{\text{core}}} U_{\Sigma}^{\tau}(\boldsymbol{r}) (\vec{\boldsymbol{T}_{\text{core}}} \cdot \vec{\boldsymbol{t}}_{\Sigma})$$

"repulsion inside the nuclear surface" "shallow attraction outside the nucleus"

"strong isospin-dependence"

The calculated spectra for ${}^{4}\text{He}(K^{-},\pi^{\pm})$ reaction can explain consistently the available data from BNL, KEK, and ANL.

 Σ -3N potential: the Σ^4 He bound state with T=1/2, J^{π}=0⁺

Strong Lane (isospin-dependent) potential and Coherent Λ - Σ coupling

Isospin dependence of the (3N)-Σ potentials

<u>Λ-Σ coupling effects on the (K⁻, π^-) spectrum *Hyperon-mixing*</u>

<u>3. 中性子星と高密度バリオン物質</u>

by J.M. Lattimer, M. Prakash,

A NEUTRON STAR: SURFACE and INTERIOR

<u>中性子星の構造とEOS</u>

S. Nishizaki, T. Takatsuka, Y. Yamamoto, PTP105(2001)607; NPA691(2001)432

Thermal evolution of hyperon-mixed neutron stars

Rapid neutrino emission via weak processes (Direct/Modified Uruca)

 $\Lambda \rightarrow p + e^- + \overline{v_e}$ $\Sigma^- \rightarrow \Lambda + e^- + \overline{\nu}_e$

≻Cooper pair ${}^{1}S_{0}$ [iner crust] ${}^{3}P_{2}-{}^{3}F_{2}(n), {}^{1}S_{0}(p)$ [core] \rightarrow Standard cooling

 \succ YY pairing

S. Tsuruta et al., Astrophys. J 691(2009)621

Nagara event $\Delta B_{\Lambda\Lambda} \sim 0.7 \text{ MeV} \rightarrow \text{no} \Lambda\Lambda$ superfluidity ?

<u>Multi-strange hadronic systemの存在可能性</u>

<u>4. S = -2 の原子核</u>

■ Ξ single-particle potentialの性質 (K⁻,K+)反応スペクトルの解析 Ξ-原子のX線の測定へ

■(K⁻,K+)反応による三ハイパー核の生成

ΛΛハイパー核

■エマルジョンによるΛΛハイパー核の発見 AA bond energy

 $\square \Lambda \Lambda$ - Ξ coupled channel approach

■(K⁻,K+)反応によるΛΛハイパー核の励起状態の生成

三ハイパー核

E03,E05@J-PARC

E03 Measurement of X rays from Ξ - atom E05: Spectroscopic study of Ξ -hypernucleus, ${}^{12}_{\Xi}Be$ via the ${}^{12}C(K-,K+)$ reaction (Day-1)

Studies of Ξ^{-} hyperon interaction with the nucleus

<u>Ξ- s.p. energies in symmetric nuclear matter</u>

 ${}^{12}{\rm C\,(K^-,K^+)\,}{}^{12}_{\Xi}{\rm Be} \quad p_{\rm K}{=}1.7~{\rm GeV}{\not\sim}~(\theta_{\rm Lab}{=}0)$ ${}^{12}C(K^-,K^+){}^{12}_{\Xi}Be \ p_K=1.7 \text{ GeV}/c \ (\theta_{Lab}=0)$ 0.10 0.05 V_{EN}(NHCD) $U_{\Xi}(k_F, \mathcal{E}_{\Xi}) k_F = 1.35 \text{ fm}^{-1}$ VEN (ESC08) 0.08 0.04 $d^2 \sigma / d\Omega dE$ $d^2\sigma/d\Omega dE_{\Xi}$ (ESC04d) +40 1_1 G-matrix calc. 2^{+} +300.01 0.02V_{=N}(Ehime) 0.00 0.00 -10 -5 0 5 10 -10 -5 0 5 10 HYPERNUCLEAR ENERGY E_{ν} (MeV) HYPERNUCLEAR ENERGY E_{Ξ} (MeV) +20+1.9 -5.8 -7.4 -5.8 +10+8.5+9.1-1.7 +8.4^{3, 3}S₁- ³D -1.0 ^{1, 3}S₁- ³D₁ +6.3-5.0 +6.4+6.0+2.4+5.6 +0.7 -0.4 0 -0.5 -2.6 -8.6 ^{1,1}S₀ -18.4 -19.6 -21.5odd -10-12.1-16.8 -28.0 -37.8-10.9 -14.5 ^{3,1}S₀ ESC04d* -18.7 ESC08a* -1.3 -0.5 -21.4 -22.3 -20.2-2.3 ESC04d -20NHC-D Ehime ESC08a -31.8 Yamamoto et al. -302006 Yamamoto ESC08b 2006 Rijken-Yamamoto (unit in MeV) 2009

T.Motoba, S.Sugimoto, NPA835(2010)223.

Hyperon s.p. potentials in finite nuclei

G-matrix+local density approximation

M. Kohno, Y. Fujiwara, PRC79(2009)054318.

<u>Ξ- spectrum in DCX (K-,K+) reactions at 1.8GeV/c</u>

T. Harada, Y. Hirabayashi, A. Umeya, PLB690(2010)363.

• Spin-stretched Ξ^- states can be populated due to the high momentum transfer. ds/d Ω [¹⁵N(1/2⁻) \otimes s_{Ξ}](1-) = 6 nb/sr, ds/d Ω [¹⁵N(1/2⁻) \otimes p_{Ξ}](2+) = 9 nb/sr for V_{Ξ}=-14 MeV.

ΛΛハイパー核

E07@J-PARC

E07: Systematic study of double strangeness system with an emulsioncounter hybrid method

Observation of AA Hypernuclei in E176/E373 Hybrid Emulsion

Five-body Cluster Calculations of the AA Hypernucleus

<u>Cluser-Model Calculations for A=6-10 ΛΛ Hypernuclei</u>

Coupled Channel Approach to Doubly Strange Hypernuclei

Energy spectrum of Ξ^{-} and $\Lambda\Lambda$ nuclei on a ¹⁶O target

. The energy shifts $\Delta B_{\Lambda\Lambda}$ are not taken into account. See also Dover, Gal and Millener, NPA572(1994) 85.

Ξ-ΛΛ spectrum in DCX (K⁻,K⁺) reactions at 1.8GeV/c

Ξ⁻ spectrum in DCX (K⁻,K⁺) reactions at 1.8GeV/c

The large momentum transfer $q_{\Xi^-} \simeq 400$ MeV/c leads to *the spin-stretched* $\Xi^$ *doorways states* followed by $[^{15}N(1/2^-, 3/2^-) \otimes s_{\Xi^-}]1^- \rightarrow [^{14}C(0^+, 2^+) \otimes s_{\Lambda}p_{\Lambda}]1^-$

Search for ΛΛ hypernuclei in the (K⁻,K⁺) reaction on ¹²C

K. Yamamoto et al. (E885 Collaboration), PLB478(2000)401.

Harada, Hirabayashi, Umeyaの計算値と矛盾しない!!

Remark

Studies of the DCX reactions (π⁺,K⁻),(K⁻,K⁺) for hypernuclear productions are very important and promising .

Future subjects:

More microscopic calculations based on YN, YY potentials are needed to compare them with the forthcoming experimental data at J-PARC.

<u>5. K^{bar}中間子原子核</u>

K^{bar}中間子原子核

Low-energy K^{bar}N interaction and Konic hydrogen

K^{bar} nuclear potentials: deep or shallow ? Kaonic atoms (K⁻,N) reaction on ¹²C and ¹⁶O

Deeply-bound kaonic state, K⁻ pp Theoretical calculations Experimental candidates

■³He(K⁻,N)K⁻ pp reaction E15@J-PARC ■ $d(\pi+,K+)K^-$ pp reaction E23@J-PARC

Kbar-Nucleus Interaction studied through in-flight (K-,N) reactions

T. Kishimoto et al., PTP118(2007)181

Theoretical prediction for deeply-bound antiKaonic nuclei

Experimental Candidates for Deeply-Bound State K-pp

Theoretical predictions of deeply-bound K-pp

- ▶ すべての理論計算が準束縛状態の存在を示唆。幅は広い。
- ▶ B.E.とГの違いはK^{bar}N int.や3体系計算方法の違いによるもの?
- "πΣN decay" チャンネル効果が必要

<u>³He(K⁻,n)K-pp spectrum at 1.0GeV/c (0deg)</u>

E15@J-PARC A search for deeply-bound kaonic nuclear states by in-flight ${}^{3}\text{He}(K^{-},n)$ reaction

missing mass spectroscopy +invariant mass spectroscopy

Integrated cross section in the bound region ~ 3.5 mb/sr (for YA)

<u>³He標的の優位性</u>

➢ Distortion effects $\frac{D_{\text{dist}}[{}^{3}\text{He}(1s_{N} \rightarrow 1s_{K})]}{D_{\text{dist}}[{}^{12}\text{C}(1p_{N} \rightarrow 1s_{K})]}$ = 0.47/0.095 → 5倍

 ▶ Recoil effects
 M_C/M_A ~2/3 → 1.8倍

 ▶ Small-size effects
 L=0状態だけが束縛

Conclusion

Studies of the production and spectroscopy of strangeness nuclei are very interesting and exciting at J-PARC.

>ストレンジネスが拓く新しい状態の発見、"エキゾチック"な原子核
 >バリオン-バリオン間相互作用の理解、短距離斥力の起源
 >高密度QCD物質の理解 → 中性子星の構造・進化の解明

Keyword

"Hyperon mixing"

Thank you very much.