

山崎 剛

名古屋大学素粒子宇宙起源研究機構

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

藏增 嘉伸 and 宇川 彰 for PACS-CS Collaboration

Refs. PRD81:111504(R)(2010) and arXiv:1105.1418[hep-lat]

「J-PARCで展開される将来の物理」研究会 KEK 2011年6月10日

1. イントロダクション

原子核スペクトラム

殻模型の成功 (<u>1949</u>: Jensen and Mayer)
陽子と中性子が有効自由度

核子スペクトラム (陽子と中性子) QCDの非摂動論的計算の成功 ← 格子QCD, ・・・ クォークとグルーオンの自由度

動機: 原子核の性質や構造をQCDから定量的に理解する

もし原子核をQCDから研究できれば、

1. 原子核スペクトルを再現

2. 観測や計算が難しい原子核(中性子過剰核等)の性質を予言

格子QCDを用いた多体核子系の研究('09以前)

1. AA系 (S=-2, I=0)

Hダイバリオン: $\Delta E_H \sim 80$ MeV '77 Jaffe

'85 Mackenzie & Thacker: Quenched QCD 非束縛

'88 Iwasaki *et al.*: Quenched QCD 束縛: 束縛エネルギー = 500 - 700 MeV
'99 Pochinsky *et al.*: Quenched QCD 非束縛: E_{AA} - 2m_A > 110 MeV
'00 Wetzorke *et al.*: Quenched QCD 非束縛か弱く束縛か判断が難しい
'02 Wetzorke & Karsch: Quenched QCD 非束縛: 体積依存性

Hダイバリオン:非束縛

'11 NPLQCD: $N_f = 2 + 1$ QCD and HALQCD: $N_f = 3$ QCD → 束縛

 a_0 :実験値から大きく離れているのは $m_{\pi} \gtrsim 0.3$ GeV だから

仮定) 重水素: $m_{\pi} \gtrsim 0.3$ GeVなので非束縛

格子QCDを用いた多体核子系の研究('09以前)

3. 三体核子NNN系 三重水素: $J^P = \frac{1}{2}^+ I = \frac{1}{2} \Delta E_{\text{Triton}} = 8.5 \text{ MeV}$

'09 NPLQCD : $N_f = 2 + 1$ QCD $m_{\pi} = 0.39$ GeV L = 2.5 fm $\Xi^0 \Xi^0 n$ and pnn チャンネル

 $E_{pnn} - 3m_N \gtrsim 0$

三重水素: おそらく非束縛

'10 Doi: 波動関数→核子三体力

格子QCDを用いた多体核子系の研究('09以前)

ハA系
 '85 Mackenzie & Thacker '00 Wetzorke *et al.* '88 Iwasaki *et al.* '99 Pochinsky *et al.* '09 NPLQCD
 Hダイバリオン:非束縛

2. 二体核子NN系 ³S₁ and ¹S₀

'95 Fukugita *et al.*: Quenched QCD '06 NPLQCD: $N_f = 2 + 1$ QCD '08 Ishii *et al.*: Quenched and $N_f = 2 + 1$ QCD '09 NPLQCD: $N_f = 2 + 1$ QCD 仮定) 重水素: $m_{\pi} \gtrsim 0.3$ GeVのため非束縛

3. 三体核子NNN系 '09 NPLQCD: N_f = 2+1 QCD 三重水素: おそらく非束縛

ヘリウム原子核:大きな束縛エネルギー ΔE_{4}_{He} = 28.3 MeV 二重魔法数 Z = 2, N = 2

本研究: ⁴He, ³He(三重水素)原子核計算の試験的研究

計算概要

ポテンシャルを基礎にしない

多体核子間力を定義しない → QCDから原子核を計算

格子QCDを用いて4,3核子系基底状態エネルギーを計算 昔ながらの計算手法

 $C_{N}(t) = \langle 0|O(t)O^{\dagger}(0)|0\rangle = \sum_{n} \langle 0|O|n\rangle \langle n|O^{\dagger}|0\rangle e^{-E_{n}t} \xrightarrow[t \gg 1]{} A_{0} e^{-E_{0}t}$ O: クォークで構成された⁴He, ³He演算子

 E_0 と4 m_N ,3 m_N を比較 \rightarrow 束縛状態?

何が難しいのか?

目次

1. イントロダクション

 2. 多体核子系束縛状態計算の問題点 統計誤差 膨大なウィックコントラクション 有限体積上での束縛状態識別

3. シミュレーションパラメータ

4. ⁴He, ³Heの結果

5. まとめと展望

最近の二体核子(重粒子)系の研究

- 2. 多体核子系束縛状態計算の問題点
- 一. 統計誤差

二. 膨大なウィックコントラクション

三. 有限体積上での束縛状態識別

一. 統計誤差

原子核エネルギーの一般的な計算(⁴He: $J^P = 0^+, I = 0, {}^{3}$ He: $J^P = 1/2^+, I = 1/2$) $C_{\text{Nucleus}}(t) \xrightarrow[t \gg 1]{} A \exp(-m_{\text{Nucleus}}t)$

 N_N 核子系 $C_{\text{Nucleus}}(t)$ の誤差の振舞

$$\frac{\text{noise}}{\text{signal}} \propto \frac{1}{\sqrt{N_{\text{meas}}}} \exp\left(N_N \left[m_N - \frac{3}{2}m_\pi\right]t\right)$$

$$N_{\text{meas}} \rightarrow \iint$$

 $m_{\pi} \rightarrow \iint \Rightarrow \frac{\text{noise}}{N_N} \rightarrow$ 大
 $N_N \rightarrow$ 大

大きな統計誤差を回避

非物理的な非常に重いクォーク質量: $m_{\pi} = 0.8 \text{ GeV} \text{ and } m_N = 1.62 \text{ GeV}$ 多くの測定 $N_{\text{meas}} = O(10^3)$

将来、物理的クォーク質量で計算を行う場合、根本的な解決方法が必要

二. 膨大なウィックコントラクション

 $C_{\text{He}}(t) = \langle 0|^4 \text{He}(t) \overline{{}^4\text{He}}(0)|0\rangle$ with ${}^4\text{He} = p^2 n^2 = [udu]^2 [dud]^2$

ウィックコントラクションの数 $N_u! \times N_d! = (2N_p + N_n)! \times (2N_n + N_p)!$ 同一視可能なコントラクションを含む

⁴He: $6! \times 6! = 518400$ ³He: $5! \times 4! = 2880$ 例) N: $2! \times 1 = 2$

コントラクション数の削減

演算子の対称性

$$p \leftrightarrow p, n \leftrightarrow n$$

アイソスピン:全ての $p \leftrightarrow n$

異なる二つのコントラクションを同時計算

 $u \leftrightarrow u$ in p(=udu) or $d \leftrightarrow d$ in n(=dud)

二. 膨大なウィックコントラクション (cont'd)

 $C_{\text{He}}(t) = \langle 0|^4 \text{He}(t) \overline{{}^4\text{He}}(0)|0\rangle \text{ with } {}^4\text{He} = p^2 n^2 = [udu]^2 [dud]^2$

ウィックコントラクションの数 $N_u! \times N_d! = (2N_p + N_n)! \times (2N_n + N_p)!$ 同一視可能なコントラクションを含む

⁴ He:	$6! \times 6! = 518400$	\longrightarrow	1107
³ He:	$5! \times 4! = 2880$	\longrightarrow	93

計算コストの削減:同じディラクとカラーの足を潰す計算を省く

三個のクォークプロパゲータのブロック *B*₃

シンク側でゼロ運動量核子演算子を組む

二つの*B*₃を使ったブロック

1, 2, 3 個のディラクの足を潰す

計算時間:数日→数分

三. 有限体積上での束縛状態識別

$$\langle 0|^{4} \operatorname{He}(t)^{\overline{4}} \operatorname{He}(0)|0\rangle \xrightarrow[t\gg1]{} A e^{-Et} (^{4} \operatorname{He:} J^{P} = 0^{+}, I = 0)$$

得られた基底状態は束縛状態か他の状態か?

量子数では識別不可

 N^4, N^{-3} He, · · · 散乱状態 (同じ量子数) ⁴He 束縛状態

エネルギーによる識別

	(一つの)束縛状態	引力散乱状態
無限体積	離散的	連続的
$E - N_N m_N$	$-\Delta E_{bind} < 0$	≥ 0
有限体積	離散的	離散的
$E - N_N m_N$		

どのくらい有限体積効果があるのか?

三. 有限体積上での束縛状態識別

$$\langle 0|^{4} \operatorname{He}(t)^{\overline{4}} \operatorname{He}(0)|0\rangle \xrightarrow[t\gg1]{} A e^{-Et} (^{4} \operatorname{He:} J^{P} = 0^{+}, I = 0)$$

得られた基底状態は束縛状態か他の状態か?

量子数では識別不可

 N^4, N^{-3} He, · · · 散乱状態 (He 束縛状態

エネルギーによる識別

	(一つの)束縛状態	引力散乱状態
無限体積	離散的	連続的
$E - N_N m_N$	$-\Delta E_{bind} < 0$	≥ 0
有限体積	離散的	離散的
$E - N_N m_N$	$-\Delta E_{\text{bind}} + \mathcal{O}(e^{-CL}) < 0$	$O(1/L^3) < 0$

二体系束縛状態: '04 Beane et al, '06 Sasaki and TY

散乱状態: '86, '91 Lüscher, '07 Beane et al.

有限体積上ではエネルギーから識別は難しい

三. 有限体積上での束縛状態識別 (cont'd)

Example) 二粒子系

三.有限体積上での束縛状態識別 (cont'd) Example) 二粒子系

三.有限体積上での束縛状態識別 (cont'd) Example) 二粒子系

三. 有限体積上での束縛状態識別 (cont'd) Example) 二粒子系

三.有限体積上での束縛状態識別 (cont'd) Example) 二粒子系

無限体積極限で定数が残る事を確認 with L = 3.1, 6.1, 12.3 fm

他の方法:スペクトラルウェイト: Mathur *et al.*, PRD70:074508(2004) 反周期的境界条件: Ishii *et al.*, PRD71:034001(2005) 3. シミュレーションパラメータ

 クエンチ岩崎ゲージ作用 at $\beta = 2.416$ $a^{-1} = 1.54$ GeV with $r_0 = 0.49$ fm
 タドポール改良ウィルソンフェルミオン作用 $m_{\pi} = 0.8$ GeV and $m_N = 1.62$ GeV

● 三体積

L	L [fm]	$N_{\rm conf}$	Nmeas
24	3.1	2500	2
48	6.1	400	12
96	12.3	200	12

• 指数関数 smearing クォーク演算子 $q(\vec{x}) = A \exp(-B|\vec{x}|)$

 S_1 S_2 (A, B) = (0.5, 0.5), (0.5, 0.1) for L = 24(A, B) = (0.5, 0.5), (1.0, 0.4) for L = 48,96

+パリティクォーク演算子

シミュレーション:

PACS-CS at 筑波大学計算科学研究センターHA8000 at 東京大学情報基盤センター

4. 結果 ⁴He, ³Heの ΔE_L の体積依存性

- 三体積で $\Delta E_L < 0 \Leftarrow 統計的に独立な三計算$
- 小さな体積依存性
- 無限体積極限外挿 with $\Delta E_L = -\Delta E_{He} + C/L^3$ 無限体積極限で定数が残る
- 束縛エネルギーは実験値と直接比較できない ← クォーク質量が非常に重い

4. 結果 (cont'd) ⁴He, ³He原子核 ΔE_L の体積依存性

- 実験値と同じオーダー
- 束縛の強さは質量数と共に大きくなる振舞は見えない $\Delta E_{4}_{He}/4 = 6.9(2.0)(1.4)$ MeV and $\Delta E_{3}_{He}/3 = 6.1(1.2)(1.0)$ MeV 非常に重いクォーク質量が原因?

5. まとめと展望

- クエンチ近似の元でヘリウム原子核の試験的研究を行なった
- 非物理的な非常に重いクォーク質量
- いくつかの方法を使った計算コストの削減
- エネルギー差の体積依存性から束縛状態識別

無限体積で非ゼロエネルギー差が残る $\rightarrow m_{\pi} = 0.8 \text{ GeV } \overline{}^{4}\text{He} \& ^{3}\text{He} \square F$ 核は束縛する

将来の課題

- 実験値との比較(クォーク質量依存性,統計誤差)
- • さらに大きな原子核 ← 新しい方法が必要
 ⁶Li: (9!)² = 131681894400 → ~ 800000
 現在の方法
- 重水素(最も単純な核子束縛状態)
- 異なるフレーバーを入れた計算
- 動的クォーク効果
- 何故、非常に重いクォーク質量で束縛状態ができるのか?

格子QCDを用いた二体核子(重粒子)系の研究('10以降)

'11 Hダイバリオンの研究

	NPLQCD	HALQCD
N_f	2 + 1	3
m_{π} [MeV]	389	674–1015
$\Delta E[MeV]$	16.6(2.1)(4.6)	35.6(7.4)(4.0)*
		*

 $m_{\pi} = 674 \text{ MeV}$

Hダイバリオンは重いクォーク質量では束縛する

'09以前の二体核子系の研究では束縛状態がないと仮定 本当に重いクォーク質量で二体核子束縛状態は存在しないのか?

- ³S₁: △*E*は実験値の約4倍, *a*₀は実験値の約1/5
- 1S_0 : 束縛状態が存在 \rightarrow 非常に重いクォーク質量が原因?

二体核子系束縛状態の研究

期待するクォーク質量依存性 ← これまでの研究と大きく異なる

- クォーク質量が軽くなると
- ³S₁: Δ*E* 減少、|*a*₀|増加
- ${}^{1}S_{0}$: ΔE 減少、 $|a_{0}|$ 增加 \rightarrow 束縛状態消失、 $|a_{0}|$ 発散+符号反転 $\rightarrow a_{0}$ 減少

クォーク質量依存性の調査が重要

5. まとめと展望

- クエンチ近似の元でヘリウム原子核の試験的研究を行なった
- 非物理的な非常に重いクォーク質量
- いくつかの方法を使った計算コストの削減
- エネルギー差の体積依存性から束縛状態識別

無限体積で非ゼロエネルギー差が残る $\rightarrow m_{\pi} = 0.8 \text{ GeV } \overline{}^{4}\text{He} \& ^{3}\text{He} \square F$ 核は束縛する

将来の課題

- 実験値との比較(クォーク質量依存性,統計誤差)
- • さらに大きな原子核 ← 新しい方法が必要
 ⁶Li: (9!)² = 131681894400 → ~ 800000
 現在の方法
- 重水素(最も単純な核子束縛状態)
- 異なるフレーバーを入れた計算
- 動的クォーク効果
- 何故、非常に重いクォーク質量で束縛状態ができるのか?