「J-PARCで展開される将来の物理」研究会

ストレンジネスを含むエキゾチックハドロン

D. Jido (Yukawa Institute, Kyoto)

high intensity beam @ J-PARC

kaonhadron spectroscopy(resonance hunting)

pion mesons in nuclei

η mesonic nuclei η' mesonic nuclei

6.10-11, 2011

What is exotic hadron ??

success of constituent quark model

good intuitive picture for hadron structure

constituent quarks in low-lying baryons

mass spectra of low lying hadrons can be understood by

Gell-Mann Okubo Mass Formula

Octet baryon $(N, \Lambda, \Sigma, \Xi)$

$$m_{\Sigma} - m_N = rac{1}{2} \left(m_{\Xi} - m_N
ight) + rac{3}{4} \left(m_{\Sigma} - m_{\Lambda}
ight)$$

254 MeV 248 MeV

3% level agreement

Typical mass scale >> SU(3) breaking

Symmetry of quarks is realized in baryon spectra through constituent quarks

exotic hadron : hadrons which are not simply explained by quark model

SU(3) flavor symmetry with a small breaking by quark masses

Decuplet baryon (Δ , Σ^* , Ξ^* , Ω)

 $m_{\Sigma^*} - m_{\Delta} = m_{\Xi^*} - m_{\Sigma^*} = m_{\Omega} - m_{\Xi^*}$

152 MeV 149 MeV 139 MeV

Friday, 10 June 2011

What is exotic hadron ??

excited states

open decay modes

coupled channels

quark model states should obtain "corrections" from scattering states meson cloud

bound and resonance states produced by hadron dynamics

interplay of hadron dynamics and quark dynamics

not clearly distinct

model dependent

but interaction ranges are different (scale separation)

hadron size ~ 0.8 fm

help intuitive understanding

chiral partner

S-wave excited baryons

spin 1/2, parity -

D. Jído

Friday, 10 June 2011

4

Interpretation of pole

chiral unitary model

Lippmann-Schwinger eq.

G: loop function (model space)

V: kernel potential (dynamics)

Hyodo, Jido, Hosaka, PRC78, 025203 ('08)

$$T = V + VGT$$

guarantee **unitarity**

given by **chiral Lagrangian**

chiral unitary model pole positions of N(1535) and Λ (1405) model parameters tuned so as to Pheno. a) reproduce scattering data -20 z : N(1535)[m z [MeV] $z_1 : \Lambda(1405)$ Pheno. -40 b) exclude quark-origin -60 states theoretically \mathbf{A} $\mathbf{z}_2: \Lambda(1405)$ Natural + Natural -80 V: WT term 1350 1400 1450 1500 1550 1600 1650 Re z [MeV]

 $\Lambda(1405)$ has mostly meson-baryon components.

N(1535) needs some other components than meson-baryon.

D. Jido

Interpretation of pole

Hyodo, Jido, Hosaka, PRC78, 025203 ('08)

pole mass in effective int.

ch

 $M_{\rm eff.}^{\Lambda^*} \simeq 7.9 [{\rm GeV}]$

 $M_{\rm eff.}^{N^*} = 1693 \pm 37i \; [{
m MeV}]$

quark model state ? chiral partner of N ??

Do not take the values seriously, because these values strongly depend on the details of model parameters.

 $\Lambda(1405)$ has mostly meson-baryon components.

N(1535) needs some other components than meson-baryon.

D. Jido

Mixing in a₁ meson

$$[\hat{D}_{\text{full}}]^{11} = \frac{z_a}{E - E_a} + \frac{z_b}{E - E_b} + (\text{regular})$$
$$[\hat{D}_{\text{full}}]^{22} = \frac{z_a^{22}}{E - E_a} + \frac{z_b^{22}}{E - E_b} + (\text{regular})$$
$$|a\rangle = \sqrt{z_a^{11}}| \diamondsuit \rangle + \sqrt{z_a^{22}}| \diamondsuit \rangle$$
$$|b\rangle = \sqrt{z_b^{11}}| \diamondsuit \rangle + \sqrt{z_b^{22}}| \diamondsuit \rangle$$

~11

~11

J-PARCで展開される将来の物理

Friday, 10 June 2011

Kaonic few-body systems

 $K^{bar}N$ and $K^{bar}K$ interactions are "similar" in a sense of chiral dynamics $\Lambda(1405)$ f₀(980), a₀(980)

pion is too light to be bound in range of strong interaction

Structure of N*(1910)

1) relativistic potential model spatial structure

DJ, Y. Kanada-En'yo, **PRC78, 035203 (2008)**

r.m.s radius: **I.7 fm** cf. I.4 fm for ⁴He

hadron-hadron distances are comparable with nucleon-nucleon distances in nuclei

mean hadron density: 0.07 hadrons/fm³

 coexistence of two quasi-bound states keeping their characters

Λ(I405)+K

a₀(980)+N

9

- main decay modes

 $\pi \Sigma K$ from Λ (1405) $\pi \eta N$ from a₀(980)

K^{bar}KK system

Kaon Ball

A. Martinez Torres, DJ, Y. Kanada-En'yo, PRC (2011), arXiv:1102.1505 [nucl-th]

threshold: 1488 MeV

potential model Faddeev

1467 MeV (BE: 21 MeV), width 110 MeV 1420 MeV, width ~50 MeV K^{bar}K Inv.Mass: 983 MeV (I=0), 950 MeV (I=1)

spatial structure obtained in potential model

K*

r.m.s radius: **I.6 fm**

K-K distance: 2.8 fm (KK)-K^{bar} distance: **I.7 fm**

role of repulsive KK interaction

before symetrization ...

K₂-K^{bar} distance: **I.6 fm**

K₁-(K₂K^{bar}) distance: **2.6 fm**

Friday, 10 June 2011

K^{bar}KK system

Kaon Ball

A. Martinez Torres, DJ, Y. Kanada-En'yo, PRC (2011), arXiv:1102.1505 [nucl-th]

threshold: 1488 MeV

Albaladejo, Oller, Roca, PRD82, 094019 (2010)

potential model Faddeev

1467 MeV (BE: 21 MeV), width 110 MeV 1420 MeV, width ~50 MeV

K^{bar}K Inv.Mass: 983 MeV (I=0), 950 MeV (I=1)

- also found in $f_0(980)$ K, $a_0(980)$ K two-body systems

K*

PDG

K(1460) seen in K $\pi\pi$ partial wave analyses

omitted from summary table

large width

 $I(J^{P}) = \frac{1}{2}(0^{-})$

OMITTED FROM SUMMARY TABLE Observed in $K\pi\pi$ partial-wave analysis.

K(1460) MASS

ALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • We do not use the	following data fo	or ave	rages, fi	ts, limi	its, etc. • •	•
1460	DAUM	81C	CNTR	_	63 $K^- p \rightarrow$	$K^{-}2\pi p$
1400 1	BRANDENB	76B	ASPK	±	13 $K^{\pm} p \rightarrow$	$K^+ 2\pi p$
1						

⁴ Coupled mainly to $K f_0(1370)$. Decay into $K^*(892)\pi$ seen.

K(1460) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT		
 We do not use the following data for averages, fits, limits, etc. 							
~ 260	DAUM	81 C	CNTR	_	$63 \ K^- p \rightarrow \ K^- 2\pi p$		
~ 250	² BRANDENB	76 B	ASPK	±	$13 K^{\pm} p \rightarrow K^{+} 2\pi p$		
² Coupled mainly to $K f_0(1370)$. Decay into $K^*(892)\pi$ seen.							

Friday, 10 June 2011

Other interests

spectroscopy and resonance hunting

interactions among hadrons

fundamental quantities

baryon spectroscopy of S=-2 sector

basic information on strange matter

SU(3) symmetry

scattering of S=+I

fundamental parameters for kaon

no strong resonances

check of ChPT for strange sector

∧(1405) vs ∧(1520)

hadron dynamics vs quark dynamics

quark model

masses of 2nd resonances, LS splitting

S=0 S=-I S=-2

Friday, 10 June 2011

Mesons in nuclei @ J-PARC

intensive pion beam

$${}^{12}\mathrm{C}(\pi^+,p)$$

formation and spectroscopy of mesonic nuclei

η mesonic nuclei

K.Itanashi, H.Fujioka, S.Hirenzaki, D.Jido, H.Nagahiro, Letter of Intent for J-PARC 2007

η' mesonic nuclei

main collaborators : Nagahiro, Hirenzaki

Friday, 10 June 2011

Mesons in nuclei

recipe create mesons in nuclei

observe energy spectrum

compare in-vacuum spectrum

modification of mass and width by many-body effects

ex. mass shift width $mN \rightarrow mN$ m.

 $mN \to \pi N$ $mNN \to NN$

interaction between meson and nuclei

in-medium self-energy of meson

mode mixing **B*-hole mode**

meson in nucleus can excite surrounding nucleons

extract more fundamental and universal quantities

ex. quark condensate $\langle ar{q}q
angle$

Friday, 10 June 2011

Partial restoration of chiral symmetry

effective reduction of quark condensate in nuclear medium

 $\langle \bar{q}q \rangle^* / \langle \bar{q}q \rangle < 1$

hadronic quantities closely connected to dynamical breaking

I) pion decay constant

deeply bound pionic atom

2) spectrum of sigma meson

 $\pi\pi$ production off nuclei

3) mass difference of chiral partners

 ρ -a₁ N-N*

4) mass of eta' meson

etc.

K. Suzuki et al., PRL92 (04) 072302.

DJ, Hatsuda, Kunihiro, PLB 670 (08) 109.

Hatsuda, Kunihiro, PRL55 (1985), 158. Hatsuda, Kunihiro, Shimizu, PRL82 (99) 2840. DJ, Hatsuda, Kunihiro, PRD63 (01) 011901. etc.

Weinberg, PRL18 (67) 507. Kapusta, Shuryak, PRD49 (94) 4694. DeTar, Kunihiro, PRD39 (89) 2805. etc.

Friday, 10 June 2011

Deeply bound pionic atom

established existence of the bound states

physical quantities successfully extracted

 208 Pb(*d*, {}^{3}He)

Deeply bound pionic atom

established existence of the bound states physical quantities successfully extracted

Friday, 10 June 2011

Nuclear bound state of meson

complementary methods

scattering

elastic scattering

meson production

 π -nucleus scattering @ 20 MeV

vector mesons

(quasi) bound state

advantage

fixed quantum number

mesons are in nuclei

quasi static

unnecessary dynamical evolution

demerit

formation of one-body potential well-separated bound states

Nuclear bound state of meson

complementary methods

scattering

elastic scattering

meson production

(quasi) bound state

advantage

fixed quantum number

mesons are in nuclei

quasi static

unnecessary dynamical e

demerit

formation of one-body potential well-separated bound states

 $\pi\text{-nucleus scattering} \textcircled{0}{20}\ \text{MeV}$

vector mesons

Missing mass spectroscopy

formation reaction of bound states

observe spectra of final nucleon (missing mass)

identification of meson in nuclei (energy, isospin,decay,...) 💷

observing decays helps to reduce the background

η: N(I535)→πN K: Λ(I405)→πΣ

nucleon pick-up

convolution of hole states and meson partial waves

recoilless selection rule

$$s_N^{-1} \otimes s_m, \ p_N^{-1} \otimes p_m, \dots$$

B

Eta mesonic nuclei

η meson: neutral charge

no electromagnetic interaction purely strong interaction

 ηN interaction is attractive

expect η bound states in nuclei (Haider, Liu) experimental attempts, but not yet clearly observed large width due to strong absorption $\eta N \rightarrow \pi N, \eta NN \rightarrow NN$, etc

ηN strongly couples to N(1535)

in-medium η meson \Leftrightarrow in-medium N(1535) $\overset{\eta}{}$ N(1535) is a candidate of chiral partner of nucleon eta mesonic nuclei probe chiral symmetry of baryon

Spectral function of in-medium eta meson

Spectral function

Reduction of the mass difference of N and N* causes level crossing between η and N*-hole

Friday, 10 June 2011

Spectral function of in-medium eta meson

Reduction of the mass difference of N and N* causes level crossing between η and N^{*}-hole

Friday, 10 June 2011

Eta mesonic nuclei @ J-PARC

Π

consider (π^+ ,p) reaction missing mass spectra of emitted proton

¹²C target

in recoilless condition (no momentum transfer)

Green function method (Morimatsu-Yazaki)

Nagahiro, Jido, Hirenzaki, PRC80, 025205 (09)

Friday, 10 June 2011

Origin of η' mass

Friday, 10 June 2011

η' meson in nuclear matter

DJ, Nagahiro, Hirenzaki, in preparation

If partial restoration of chiral symmetry takes place in nuclear matter we expect strong mass reduction in nuclei $\Delta m_{\eta'} \sim 100 \text{ MeV}$ (with 25% PRChS and $m_{\eta'} - m_{\eta} \approx 400 \text{ MeV}$)

Narrow width ??

dispersion relation for self-energy

$$\operatorname{Re}V(\omega) = a(\omega_0) + \frac{\omega - \omega_0}{\pi} \operatorname{P} \int d\omega' \frac{\operatorname{Im}V(\omega)}{(\omega' - \omega_0)(\omega' - \omega)}$$

attraction induced by s-channel has same order of absorption

contact interaction in hadronic level

This mass reduction does not directly come from nuclear many-body interaction. Thus the width may be smaller than binding energy.

Friday, 10 June 2011

Current experimental status

RHIC: phenix/star (Low energy pion)

Friday, 10 June 2011

Formation spectrum

 $^{12}{
m C}(\pi^+,p)$ p $_{\pi}$ =1.8 GeV/c q=200MeV/c

$$\pi^+ n \to p \eta' \quad \left(\frac{d\sigma}{d\Omega}\right)^{\text{lab.}} = 100 \mu \text{b/st}$$

Friday, 10 June 2011

D. Jído

26

J-PARCで展開される将来の物理

Summary

hadron spectroscopy

hadron interaction

understanding and interpretation

from exotic hadron to normal hadron

mesonic nuclei

clear connection to fundamental quantities partial restoration of chiral symmetry

need clear signal at the beginning

 $\boldsymbol{\eta}$ ' meson is bound with a narrow width

D. Jído

hadron dynamics vs quark dynamics

fundamental symmetry